General topics | ||||||||||||||||
Flow control | ||||||||||||||||
Conditional execution statements | ||||||||||||||||
Iteration statements (loops) | ||||||||||||||||
Jump statements | ||||||||||||||||
Functions | ||||||||||||||||
Function declaration | ||||||||||||||||
Lambda function expression | ||||||||||||||||
inline specifier | ||||||||||||||||
Dynamic exception specifications(until C++17*) | ||||||||||||||||
noexcept specifier(C++11) | ||||||||||||||||
Exceptions | ||||||||||||||||
Namespaces | ||||||||||||||||
Types | ||||||||||||||||
Specifiers | ||||||||||||||||
| ||||||||||||||||
Storage duration specifiers | ||||||||||||||||
Initialization | ||||||||||||||||
Expressions | ||||||||||||||||
Alternative representations | ||||||||||||||||
Literals | ||||||||||||||||
Boolean -Integer -Floating-point | ||||||||||||||||
Character -String -nullptr(C++11) | ||||||||||||||||
User-defined(C++11) | ||||||||||||||||
Utilities | ||||||||||||||||
Attributes(C++11) | ||||||||||||||||
Types | ||||||||||||||||
typedef declaration | ||||||||||||||||
Type alias declaration(C++11) | ||||||||||||||||
Casts | ||||||||||||||||
Memory allocation | ||||||||||||||||
Classes | ||||||||||||||||
Class-specific function properties | ||||||||||||||||
| ||||||||||||||||
Special member functions | ||||||||||||||||
Templates | ||||||||||||||||
Miscellaneous | ||||||||||||||||
|
General | ||||
Literals | ||||
Operators | ||||
Conversions | ||||
Template parameters | ||||
Template arguments | ||||
Class templates | ||||
Function templates | ||||
Class member templates | ||||
Variable templates(C++14) | ||||
Template argument deduction | ||||
Class template argument deduction(C++17) | ||||
Explicit (full) specialization | ||||
Partial specialization | ||||
Dependent names | ||||
Packs(C++11) | ||||
sizeof...(C++11) | ||||
Fold expressions(C++17) | ||||
Pack indexing(C++26) | ||||
SFINAE | ||||
Constraints and concepts(C++20) | ||||
requires expression(C++20) |
Class templates,function templates (includinggeneric lambdas), and othertemplated functions (typically members of class templates) might be associated with aconstraint , which specifies the requirements on template arguments, which can be used to select the most appropriate function overloads and template specializations.
Named sets of suchrequirements are calledconcepts . Each concept is a predicate, evaluated at compile time, and becomes a part of the interface of a template where it is used as a constraint:
#include <cstddef>#include <concepts>#include <functional>#include <string> // Declaration of the concept “Hashable”, which is satisfied by any type “T”// such that for values “a” of type “T”, the expression std::hash<T>{}(a)// compiles and its result is convertible to std::size_ttemplate<typename T>concept Hashable= requires(T a){{std::hash<T>{}(a)}->std::convertible_to<std::size_t>;}; struct meow{}; // Constrained C++20 function template:template<Hashable T>void f(T){}//// Alternative ways to apply the same constraint:// template<typename T>// requires Hashable<T>// void f(T) {}//// template<typename T>// void f(T) requires Hashable<T> {}//// void f(Hashable auto /* parameter-name */) {} int main(){using std::operator""s; f("abc"s);// OK, std::string satisfies Hashable// f(meow{}); // Error: meow does not satisfy Hashable}
Violations of constraints are detected at compile time, early in the template instantiation process, which leads to easy to follow error messages:
std::list<int> l={3,-1,10};std::sort(l.begin(), l.end());// Typical compiler diagnostic without concepts:// invalid operands to binary expression ('std::_List_iterator<int>' and// 'std::_List_iterator<int>')// std::__lg(__last - __first) * 2);// ~~~~~~ ^ ~~~~~~~// ... 50 lines of output ...//// Typical compiler diagnostic with concepts:// error: cannot call std::sort with std::_List_iterator<int>// note: concept RandomAccessIterator<std::_List_iterator<int>> was not satisfied
The intent of concepts is to model semantic categories (Number, Range, RegularFunction) rather than syntactic restrictions (HasPlus, Array). According toISO C++ core guideline T.20, “The ability to specify meaningful semantics is a defining characteristic of a true concept, as opposed to a syntactic constraint.”
Contents |
A concept is a named set ofrequirements. The definition of a concept must appear at namespace scope.
The definition of a concept has the form
template < template-parameter-list>
| |||||||||
attr | - | sequence of any number ofattributes |
// concepttemplate<class T,class U>concept Derived=std::is_base_of<U, T>::value;
Concepts cannot recursively refer to themselves and cannot be constrained:
template<typename T>concept V= V<T*>;// error: recursive concept template<class T>concept C1=true;template<C1 T>concept Error1=true;// Error: C1 T attempts to constrain a concept definitiontemplate<class T> requires C1<T>concept Error2=true;// Error: the requires clause attempts to constrain a concept
Explicit instantiations, explicit specializations, or partial specializations of concepts are not allowed (the meaning of the original definition of a constraint cannot be changed).
Concepts can be named in an id-expression. The value of the id-expression istrue if the constraint expression is satisfied, andfalse otherwise.
Concepts can also be named in a type-constraint, as part of
In atype-constraint, a concept takes one less template argument than its parameter list demands, because the contextually deduced type is implicitly used as the first argument of the concept.
template<class T,class U>concept Derived=std::is_base_of<U, T>::value; template<Derived<Base> T>void f(T);// T is constrained by Derived<T, Base>
A constraint is a sequence of logical operations and operands that specifies requirements on template arguments. They can appear withinrequires expressions or directly as bodies of concepts.
There arethree(until C++26)four(since C++26) types of constraints:
4) fold expanded constraints | (since C++26) |
The constraint associated with a declaration is determined bynormalizing a logical AND expression whose operands are in the following order:
This order determines the order in which constraints are instantiated when checking for satisfaction.
A constrained declaration may only be redeclared using the same syntactic form. No diagnostic is required:
// These first two declarations of f are finetemplate<Incrementable T>void f(T) requires Decrementable<T>; template<Incrementable T>void f(T) requires Decrementable<T>;// OK, redeclaration // Inclusion of this third, logically-equivalent-but-syntactically-different// declaration of f is ill-formed, no diagnostic requiredtemplate<typename T> requires Incrementable<T>&& Decrementable<T>void f(T); // The following two declarations have different constraints:// the first declaration has Incrementable<T> && Decrementable<T>// the second declaration has Decrementable<T> && Incrementable<T>// Even though they are logically equivalent. template<Incrementable T>void g(T) requires Decrementable<T>; template<Decrementable T>void g(T) requires Incrementable<T>;// ill-formed, no diagnostic required
The conjunction of two constraints is formed by using the&&
operator in the constraint expression:
template<class T>concept Integral=std::is_integral<T>::value;template<class T>concept SignedIntegral= Integral<T>&&std::is_signed<T>::value;template<class T>concept UnsignedIntegral= Integral<T>&&!SignedIntegral<T>;
A conjunction of two constraints is satisfied only if both constraints are satisfied. Conjunctions are evaluated left to right and short-circuited (if the left constraint is not satisfied, template argument substitution into the right constraint is not attempted: this prevents failures due to substitution outside of immediate context).
template<typename T>constexprbool get_value(){return T::value;} template<typename T> requires(sizeof(T)>1&& get_value<T>())void f(T);// #1 void f(int);// #2 void g(){ f('A');// OK, calls #2. When checking the constraints of #1,// 'sizeof(char) > 1' is not satisfied, so get_value<T>() is not checked}
The disjunction of two constraints is formed by using the||
operator in the constraint expression.
A disjunction of two constraints is satisfied if either constraint is satisfied. Disjunctions are evaluated left to right and short-circuited (if the left constraint is satisfied, template argument substitution into the right constraint is not attempted).
template<class T=void> requires EqualityComparable<T>|| Same<T,void>struct equal_to;
An atomic constraint consists of an expressionE and a mapping from the template parameters that appear withinE to template arguments involving the template parameters of the constrained entity, called itsparameter mapping .
Atomic constraints are formed duringconstraint normalization.E is never a logical AND or logical OR expression (those form conjunctions and disjunctions, respectively).
Satisfaction of an atomic constraint is checked by substituting the parameter mapping and template arguments into the expressionE. If the substitution results in an invalid type or expression, the constraint is not satisfied. Otherwise,E, after any lvalue-to-rvalue conversion, must be a prvalue constant expression of typebool, and the constraint is satisfied if and only if it evaluates totrue.
The type ofE after substitution must be exactlybool. No conversion is permitted:
template<typename T>struct S{constexpr operatorbool()const{returntrue;}}; template<typename T> requires(S<T>{})void f(T);// #1 void f(int);// #2 void g(){ f(0);// error: S<int>{} does not have type bool when checking #1,// even though #2 is a better match}
Two atomic constraints are consideredidentical if they are formed from the same expression at the source level and their parameter mappings are equivalent.
template<class T>constexprbool is_meowable=true; template<class T>constexprbool is_cat=true; template<class T>concept Meowable= is_meowable<T>; template<class T>concept BadMeowableCat= is_meowable<T>&& is_cat<T>; template<class T>concept GoodMeowableCat= Meowable<T>&& is_cat<T>; template<Meowable T>void f1(T);// #1 template<BadMeowableCat T>void f1(T);// #2 template<Meowable T>void f2(T);// #3 template<GoodMeowableCat T>void f2(T);// #4 void g(){ f1(0);// error, ambiguous:// the is_meowable<T> in Meowable and BadMeowableCat forms distinct atomic// constraints that are not identical (and so do not subsume each other) f2(0);// OK, calls #4, more constrained than #3// GoodMeowableCat got its is_meowable<T> from Meowable}
Fold expanded constraintsAfold expanded constraint is formed from a constraint LetN be the number of elements in the pack expansion parameters:
template<class T> concept A=std::is_move_constructible_v<T>;template<class T> concept B=std::is_copy_constructible_v<T>;template<class T> concept C= A<T>&& B<T>; // in C++23, these two overloads of g() have distinct atomic constraints// that are not identical and so do not subsume each other: calls to g() are ambiguous// in C++26, the folds are expanded and constraint on overload #2 (both move and copy// required), subsumes constraint on overload #1 (just the move is required)template<class...T>requires(A<T>&& ...)void g(T...);// #1 template<class...T>requires(C<T>&& ...)void g(T...);// #2 | (since C++26) |
Constraint normalization is the process that transforms a constraint expression into a sequence of conjunctions and disjunctions of atomic constraints. Thenormal form of an expression is defined as follows:
C
names a concept, is the normal form of the constraint expression ofC
, after substitutingA1
,A2
, ... ,AN
forC
's respective template parameters in the parameter mappings of each atomic constraint ofC
. If any such substitution into the parameter mappings results in an invalid type or expression, the program is ill-formed, no diagnostic required.template<typename T>concept A= T::value||true; template<typename U>concept B= A<U*>;// OK: normalized to the disjunction of// - T::value (with mapping T -> U*) and// - true (with an empty mapping).// No invalid type in mapping even though// T::value is ill-formed for all pointer types template<typename V>concept C= B<V&>;// Normalizes to the disjunction of// - T::value (with mapping T-> V&*) and// - true (with an empty mapping).// Invalid type V&* formed in mapping => ill-formed NDR
| (since C++26) |
&&
or||
operators.User-defined overloads of&&
or||
have no effect on constraint normalization.
The keywordrequires is used to introduce arequires clause , which specifies constraints on template arguments or on a function declaration.
template<typename T>void f(T&&) requires Eq<T>;// can appear as the last element of a function declarator template<typename T> requires Addable<T>// or right after a template parameter listT add(T a, T b){return a+ b;}
In this case, the keywordrequires must be followed by some constant expression (so it's possible to writerequirestrue), but the intent is that a named concept (as in the example above) or a conjunction/disjunction of named concepts or arequires expression is used.
The expression must have one of the following forms:
&&
.||
.template<class T>constexprbool is_meowable=true; template<class T>constexprbool is_purrable(){returntrue;} template<class T>void f(T) requires is_meowable<T>;// OK template<class T>void g(T) requires is_purrable<T>();// error, is_purrable<T>() is not a primary expression template<class T>void h(T) requires(is_purrable<T>());// OK
Before any further analysis, constraints arenormalized by substituting the body of every named concept and everyrequires expression until what is left is a sequence of conjunctions and disjunctions on atomic constraints.
A constraintP
is said tosubsume constraintQ
if it can be proven thatP
impliesQ
up to the identity of atomic constraints in P and Q. (Types and expressions are not analyzed for equivalence:N > 0
does not subsumeN >= 0
).
Specifically, firstP
is converted to disjunctive normal form andQ
is converted to conjunctive normal form.P
subsumesQ
if and only if:
P
subsumes every conjunctive clause in the conjunctive normal form ofQ
, whereU
in the disjunctive clause and an atomic constraintV
in the conjunctive clause such thatU
subsumesV
;A
subsumes an atomic constraintB
if and only if they are identical using the rules describedabove.
| (since C++26) |
Subsumption relationship defines partial order of constraints, which is used to determine:
This section is incomplete Reason: backlinks from the above to here |
If declarationsD1
andD2
are constrained andD1
's associated constraints subsumeD2
's associated constraints (or ifD2
is unconstrained), thenD1
is said to beat least as constrained asD2
. IfD1
is at least as constrained asD2
, andD2
is not at least as constrained asD1
, thenD1
ismore constrained thanD2
.
If all following conditions are satisfied, a non-template functionF1
ismore partial-ordering-constrained than a non-template functionF2
:
F1
is more constrained thanF2
.template<typename T>concept Decrementable= requires(T t){--t;};template<typename T>concept RevIterator= Decrementable<T>&& requires(T t){*t;}; // RevIterator subsumes Decrementable, but not the other way around template<Decrementable T>void f(T);// #1 template<RevIterator T>void f(T);// #2, more constrained than #1 f(0);// int only satisfies Decrementable, selects #1f((int*)0);// int* satisfies both constraints, selects #2 as more constrained template<class T>void g(T);// #3 (unconstrained) template<Decrementable T>void g(T);// #4 g(true);// bool does not satisfy Decrementable, selects #3g(0);// int satisfies Decrementable, selects #4 because it is more constrained template<typename T>concept RevIterator2= requires(T t){--t;*t;}; template<Decrementable T>void h(T);// #5 template<RevIterator2 T>void h(T);// #6 h((int*)0);// ambiguous
Feature-test macro | Value | Std | Feature |
---|---|---|---|
__cpp_concepts | 201907L | (C++20) | Constraints |
202002L | (C++20) | Conditionally trivialspecial member functions |
The following behavior-changing defect reports were applied retroactively to previously published C++ standards.
DR | Applied to | Behavior as published | Correct behavior |
---|---|---|---|
CWG 2428 | C++20 | could not apply attributes to concepts | allowed |
Requires expression(C++20) | yields a prvalue expression of typebool that describes the constraints[edit] |