Common mathematical functions | |||||||||||||||||||||||||||||||
Mathematical special functions(C++17) | |||||||||||||||||||||||||||||||
Mathematical constants(C++20) | |||||||||||||||||||||||||||||||
Basic linear algebra algorithms(C++26) | |||||||||||||||||||||||||||||||
Data-parallel types (SIMD)(C++26) | |||||||||||||||||||||||||||||||
Floating-point environment(C++11) | |||||||||||||||||||||||||||||||
Complex numbers | |||||||||||||||||||||||||||||||
Numeric array (valarray ) | |||||||||||||||||||||||||||||||
Pseudo-random number generation | |||||||||||||||||||||||||||||||
Bit manipulation(C++20) | |||||||||||||||||||||||||||||||
Saturation arithmetic(C++26) | |||||||||||||||||||||||||||||||
Factor operations | |||||||||||||||||||||||||||||||
|
| ||||||||||||||||||||||||||||||
Interpolations | |||||||||||||||||||||||||||||||
|
| ||||||||||||||||||||||||||||||
Generic numeric operations | |||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||
C-style checked integer arithmetic | |||||||||||||||||||||||||||||||
|
The library provides data-parallel types and operations on these types: portable types for explicitly stating data-parallelism and structuring data through data-parallel execution resources where available, such asSIMD registers and instructions or execution units that are driven by a common instruction decoder.
The set ofvectorizable types comprises:
T
is a vectorizable floating-point type.Adata-parallel type consists of one or more elements of an underlying vectorizable type, called theelement type . The number of elements, called thewidth , is constant for each data-parallel type.
The data-parallel type refers to all enabled specializations of the class templatesbasic_simd
andbasic_simd_mask
.
Adata-parallel object of data-parallel type behaves analogously to objects of typeT
. But whileT
stores and manipulates a single value, the data-parallel type with the element typeT
stores and manipulates multiple values.
Every operation on a data-parallel object actselement-wise (except for horizontal operations, such as reductions, which are clearly marked as such) applying to each element of the object or to corresponding elements of two objects. Each such application is unsequenced with respect to the others. This simple rule expresses data-parallelism and will be used by the compiler to generate SIMD instructions and/or independent execution streams.
All operations (except non-constexpr math function overloads) on data-parallel objects areconstexpr: it is possible to create and use data-parallel objects in the evaluation of a constant expression.
Alias templatessimd
andsimd_mask
are defined to allow users to specify the width to a certain size. The default width is determined by the implementation at compile-time.
Defined in header <simd> | |
Defined in namespace std::datapar |
Contents |
(C++26) | data-parallel vector type (class template)[edit] |
(C++26) | convenience alias template forbasic_simd that can specify its width(alias template)[edit] |
(C++26) | data-parallel type with the element typebool (class template)[edit] |
(C++26) | convenience alias template forbasic_simd_mask that can specify its width(alias template)[edit] |
(C++26) | load and store flags for data-parallel types (class template)[edit] |
(C++26) | default flag used on load and store operations (constant)[edit] |
(C++26) | flag enabling conversions that are not value-preserving on load and store operations (constant)[edit] |
(C++26) | flag indicating alignment of the load-store address to some specified storage to the value ofdatapar::alignment (constant)[edit] |
(C++26) | flag indicating alignment of the load-store address to some specified storage to the specified alignment (variable template)[edit] |
loads elements from a contiguous range tobasic_simd (function template)[edit] | |
stores elements frombasic_simd to a contiguous range(function template)[edit] |
(C++26) | splits single data-parallel object to multiple ones (function template)[edit] |
(C++26) | concatenates multiple data-parallel objects into a single one (function template)[edit] |
element-wise min/max operations forbasic_simd (function template)[edit] | |
(C++26) | element-wise clamp operation forbasic_simd (function template)[edit] |
(C++26) | element-wise selection using conditional operator (function template)[edit] |
reduces all values inbasic_simd over a specified binary operation to a single value(function template)[edit] | |
reductions ofbasic_simd_mask tobool(function template)[edit] | |
(C++26) | reduction ofbasic_simd_mask to number oftrue values(function template)[edit] |
reductions ofbasic_simd_mask to the index of first or lasttrue value(function template)[edit] |
(C++26) | obtains an appropriate alignment fordatapar::flag_aligned (class template)[edit] |
(C++26) | changes element type of the data-parallel type (class template)[edit] |
(C++26) | changes the width of the data-parallel type (class template)[edit] |
All functions in<cmath> and<complex> are overloaded forbasic_simd
.
This section is incomplete Reason: description |
All bit manipulation functions in<bit> are overloaded forbasic_simd
.
This section is incomplete Reason: description |
The data-parallel typesbasic_simd
andbasic_simd_mask
are associated withABI tags . These tags are types that specify the size and binary representation of data-parallel objects. The design intends the size and binary representation to vary based on target architecture and compiler flags. The ABI tag, together with the element type, determines the width.
The ABI tag remains independent of machine instruction set selection. The chosen machine instruction set limits the usable ABI tag types. The ABI tags enable users to safely pass objects of data-parallel type across translation unit boundaries.
This section is incomplete |
This section is incomplete Reason: needs update |
using/*simd-size-type*/=/* see description */; | (1) | (exposition only*) |
template<std::size_t Bytes> using/*integer-from*/=/* see description */; | (2) | (exposition only*) |
template<class T,class Abi> constexpr/*simd-size-type*//*simd-size-v*/=/* see description */; | (3) | (exposition only*) |
template<class T> constexprstd::size_t/*mask-element-size*/=/* see description */; | (4) | (exposition only*) |
template<class T> concept/*constexpr-wrapper-like*/=/* see description */; | (5) | (exposition only*) |
template<class T> using/*deduced-simd-t*/=/* see description */; | (6) | (exposition only*) |
template<class V,class T> using/*make-compatible-simd-t*/=/* see description */; | (7) | (exposition only*) |
T
such thatsizeof(T) equalsBytes.basic_simd<T, Abi>
, or0 otherwise.T
denotesstd::datapar::basic_simd_mask<Bytes, Abi>,/*mask-element-size*/<T> equalsBytes.template<class T>concept/*constexpr-wrapper-like*/=std::convertible_to<T, decltype(T::value)>&&std::equality_comparable_with<T, decltype(T::value)>&&std::bool_constant<T()== T::value>::value&&std::bool_constant<static_cast<decltype(T::value)>(T())== T::value>::value;
basic_simd
; otherwiseMath functions requirements | ||
template<class V> concept/*simd-floating-point*/=/* see description */; | (8) | (exposition only*) |
template<class...Ts> concept/*math-floating-point*/=/* see description */; | (9) | (exposition only*) |
template<class...Ts> requires/*math-floating-point*/<Ts...> | (10) | (exposition only*) |
template<class BinaryOp,class T> concept/*reduction-binary-operation*/=/* see description */; | (11) | (exposition only*) |
template<class V>concept/*simd-floating-point*/=std::same_as<V, std::datapar::basic_simd<typename V::value_type,typename V::abi_type>>&&std::is_default_constructible_v<V>&&std::floating_point<typename V::value_type>;
template<class...Ts>concept/*math-floating-point*/=(/*simd-floating-point*/</*deduced-simd-t*/<Ts>>|| ...);
T0
denoteTs...[0],T1
denoteTs...[1], andTRest
denote a pack such thatT0, T1, TRest... is equivalent toTs.... Then,/*math-common-simd-t*/<Ts...> is an alias equivalent to:template<class BinaryOp,class T>concept/*reduction-binary-operation*/= requires(const BinaryOp binary_op,const std::datapar::simd<T,1> v){{ binary_op(v, v)}->std::same_as<std::datapar::simd<T,1>>;};
/*reduction-binary-operation*/<BinaryOp, T> is modeled only if:
BinaryOp
is a binary element-wise operation that is commutative, andBinaryOp
is invocable with two arguments of typestd::datapar::basic_simd<T, Abi> for unspecified ABI tagAbi
that returns astd::datapar::basic_simd<T, Abi>.SIMD ABI tags | ||
template<class T> using/*native-abi*/=/* see description */; | (12) | (exposition only*) |
template<class T,/*simd-size-type*/ N> using/*deduce-abi-t*/=/* see description */; | (13) | (exposition only*) |
T
is a vectorizable type, andN>0&& N<= M istrue, whereM is an implementation-defined maximum that is at least64 and can differ depending onT
.Load and store flags | ||
struct/*convert-flag*/; | (14) | (exposition only*) |
struct/*aligned-flag*/; | (15) | (exposition only*) |
template<std::size_t N> struct/*overaligned-flag*/; | (16) | (exposition only*) |
std::datapar::flags
. Seeload and store flags for their corresponding uses.Feature-test macro | Value | Std | Feature |
---|---|---|---|
__cpp_lib_simd | 202411L | (C++26) | Data-parallel types and operations |
__cpp_lib_simd_complex | 202502L | (C++26) | Support of interleaved complex values instd::datapar::simd |
#include <iostream>#include <simd>#include <string_view> void println(std::string_view name,autoconst& a){std::cout<< name<<": ";for(std::size_t i{}; i!= a.size();++i)std::cout<< a[i]<<' ';std::cout<<'\n';} template<class A>constexpr std::datapar::basic_simd<int, A> my_abs(std::datapar::basic_simd<int, A> x){return std::datapar::select(x<0,-x, x);} int main(){constexpr std::datapar::simd<int> a=1; println("a", a); constexpr std::datapar::simd<int> b([](int i){return i-2;}); println("b", b); constexprauto c= a+ b; println("c", c); constexprauto d= my_abs(c); println("d", d); constexprauto e= d* d; println("e", e); constexprauto inner_product= std::datapar::reduce(e);std::cout<<"inner product: "<< inner_product<<'\n'; constexpr std::datapar::simd<double,16> x([](int i){return i;}); println("x", x);// overloaded math functions are defined in <simd> println("cos²(x) + sin²(x)",std::pow(std::cos(x),2)+std::pow(std::sin(x),2));}
Output:
a: 1 1 1 1 b: -2 -1 0 1 c: -1 0 1 2 d: 1 0 1 2 e: 1 0 1 4 inner product: 6x: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 cos²(x) + sin²(x): 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
numeric arrays, array masks and array slices (class template)[edit] |
1. | The implementation of ISO/IEC TS 19570:2018 Section 9 "Data-Parallel Types" — github.com |
2. | TS implementation reach forGCC/libstdc++ (std::experimental::simd is shipping with GCC-11) — gcc.gnu.org |