| Common mathematical functions | |||||||||||||||||||||||||||||||
| Mathematical special functions(C++17) | |||||||||||||||||||||||||||||||
| Mathematical constants(C++20) | |||||||||||||||||||||||||||||||
| Basic linear algebra algorithms(C++26) | |||||||||||||||||||||||||||||||
| Data-parallel types (SIMD)(C++26) | |||||||||||||||||||||||||||||||
| Floating-point environment(C++11) | |||||||||||||||||||||||||||||||
| Complex numbers | |||||||||||||||||||||||||||||||
Numeric array (valarray) | |||||||||||||||||||||||||||||||
| Pseudo-random number generation | |||||||||||||||||||||||||||||||
| Bit manipulation(C++20) | |||||||||||||||||||||||||||||||
| Saturation arithmetic(C++26) | |||||||||||||||||||||||||||||||
| Factor operations | |||||||||||||||||||||||||||||||
|
| ||||||||||||||||||||||||||||||
| Interpolations | |||||||||||||||||||||||||||||||
|
| ||||||||||||||||||||||||||||||
| Generic numeric operations | |||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||
| C-style checked integer arithmetic | |||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||
Defined in header <complex> | ||
template<class T> complex<T> asinh(const complex<T>& z); | (since C++11) | |
Computes complex arc hyperbolic sine of a complex valuez with branch cuts outside the interval[−i; +i] along the imaginary axis.
Contents |
| z | - | complex value |
If no errors occur, the complex arc hyperbolic sine ofz is returned, in the range of a strip mathematically unbounded along the real axis and in the interval[−iπ/2; +iπ/2] along the imaginary axis.
Errors are reported consistent withmath_errhandling.
If the implementation supports IEEE floating-point arithmetic,
(+0,+0), the result is(+0,+0)(x,+∞) (for any positive finite x), the result is(+∞,π/2)(x,NaN) (for any finite x), the result is(NaN,NaN) andFE_INVALID may be raised(+∞,y) (for any positive finite y), the result is(+∞,+0)(+∞,+∞), the result is(+∞,π/4)(+∞,NaN), the result is(+∞,NaN)(NaN,+0), the result is(NaN,+0)(NaN,y) (for any finite nonzero y), the result is(NaN,NaN) andFE_INVALID may be raised(NaN,+∞), the result is(±∞,NaN) (the sign of the real part is unspecified)(NaN,NaN), the result is(NaN,NaN)Although the C++ standard names this function "complex arc hyperbolic sine", the inverse functions of the hyperbolic functions are the area functions. Their argument is the area of a hyperbolic sector, not an arc. The correct name is "complex inverse hyperbolic sine", and, less common, "complex area hyperbolic sine".
Inverse hyperbolic sine is a multivalued function and requires a branch cut on the complex plane. The branch cut is conventionally placed at the line segments(-i∞,-i) and(i,i∞) of the imaginary axis.
The mathematical definition of the principal value of the inverse hyperbolic sine isasinh z = ln(z +√1+z2
).
| asin(iz) |
| i |
#include <complex>#include <iostream> int main(){std::cout<<std::fixed;std::complex<double> z1(0.0,-2.0);std::cout<<"asinh"<< z1<<" = "<<std::asinh(z1)<<'\n'; std::complex<double> z2(-0.0,-2);std::cout<<"asinh"<< z2<<" (the other side of the cut) = "<<std::asinh(z2)<<'\n'; // for any z, asinh(z) = asin(iz) / istd::complex<double> z3(1.0,2.0);std::complex<double> i(0.0,1.0);std::cout<<"asinh"<< z3<<" = "<<std::asinh(z3)<<'\n'<<"asin"<< z3* i<<" / i = "<<std::asin(z3* i)/ i<<'\n';}
Output:
asinh(0.000000,-2.000000) = (1.316958,-1.570796)asinh(-0.000000,-2.000000) (the other side of the cut) = (-1.316958,-1.570796)asinh(1.000000,2.000000) = (1.469352,1.063440)asin(-2.000000,1.000000) / i = (1.469352,1.063440)
(C++11) | computes area hyperbolic cosine of a complex number (\({\small\operatorname{arcosh}{z}}\)arcosh(z)) (function template)[edit] |
(C++11) | computes area hyperbolic tangent of a complex number (\({\small\operatorname{artanh}{z}}\)artanh(z)) (function template)[edit] |
| computes hyperbolic sine of a complex number (\({\small\sinh{z}}\)sinh(z)) (function template)[edit] | |
(C++11)(C++11)(C++11) | computes the inverse hyperbolic sine (\({\small\operatorname{arsinh}{x}}\)arsinh(x)) (function)[edit] |
C documentation forcasinh | |