| Common mathematical functions | |||||||||||||||||||||||||||||||
| Mathematical special functions(C++17) | |||||||||||||||||||||||||||||||
| Mathematical constants(C++20) | |||||||||||||||||||||||||||||||
| Basic linear algebra algorithms(C++26) | |||||||||||||||||||||||||||||||
| Data-parallel types (SIMD)(C++26) | |||||||||||||||||||||||||||||||
| Floating-point environment(C++11) | |||||||||||||||||||||||||||||||
| Complex numbers | |||||||||||||||||||||||||||||||
Numeric array (valarray) | |||||||||||||||||||||||||||||||
| Pseudo-random number generation | |||||||||||||||||||||||||||||||
| Bit manipulation(C++20) | |||||||||||||||||||||||||||||||
| Saturation arithmetic(C++26) | |||||||||||||||||||||||||||||||
| Factor operations | |||||||||||||||||||||||||||||||
|
| ||||||||||||||||||||||||||||||
| Interpolations | |||||||||||||||||||||||||||||||
|
| ||||||||||||||||||||||||||||||
| Generic numeric operations | |||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||
| C-style checked integer arithmetic | |||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||
Defined in header <complex> | ||
template<class T> complex<T> acos(const complex<T>& z); | (since C++11) | |
Computes complex arc cosine of a complex valuez. Branch cuts exist outside the interval[−1, +1] along the real axis.
Contents |
| z | - | complex value |
If no errors occur, complex arc cosine ofz is returned, in the range of a strip unbounded along the imaginary axis and in the interval[0, +π] along the real axis.
Errors are reported consistent withmath_errhandling.
If the implementation supports IEEE floating-point arithmetic,
(±0,+0), the result is(π/2,-0)(±0,NaN), the result is(π/2,NaN)(x,+∞) (for any finite x), the result is(π/2,-∞)(x,NaN) (for any nonzero finite x), the result is(NaN,NaN) andFE_INVALID may be raised.(-∞,y) (for any positive finite y), the result is(π,-∞)(+∞,y) (for any positive finite y), the result is(+0,-∞)(-∞,+∞), the result is(3π/4,-∞)(+∞,+∞), the result is(π/4,-∞)(±∞,NaN), the result is(NaN,±∞) (the sign of the imaginary part is unspecified)(NaN,y) (for any finite y), the result is(NaN,NaN) andFE_INVALID may be raised(NaN,+∞), the result is(NaN,-∞)(NaN,NaN), the result is(NaN,NaN)Inverse cosine (or arc cosine) is a multivalued function and requires a branch cut on the complex plane. The branch cut is conventionally placed at the line segments(-∞,-1) and(1,∞) of the real axis.
The mathematical definition of the principal value of arc cosine isacos z =| 1 |
| 2 |
For anyz,acos(z) = π - acos(-z).
#include <cmath>#include <complex>#include <iostream> int main(){std::cout<<std::fixed;std::complex<double> z1(-2.0,0.0);std::cout<<"acos"<< z1<<" = "<<std::acos(z1)<<'\n'; std::complex<double> z2(-2.0,-0.0);std::cout<<"acos"<< z2<<" (the other side of the cut) = "<<std::acos(z2)<<'\n'; // for any z, acos(z) = pi - acos(-z)constdouble pi=std::acos(-1);std::complex<double> z3= pi-std::acos(z2);std::cout<<"cos(pi - acos"<< z2<<") = "<<std::cos(z3)<<'\n';}
Output:
acos(-2.000000,0.000000) = (3.141593,-1.316958)acos(-2.000000,-0.000000) (the other side of the cut) = (3.141593,1.316958)cos(pi - acos(-2.000000,-0.000000)) = (2.000000,0.000000)
(C++11) | computes arc sine of a complex number (\({\small\arcsin{z}}\)arcsin(z)) (function template)[edit] |
(C++11) | computes arc tangent of a complex number (\({\small\arctan{z}}\)arctan(z)) (function template)[edit] |
| computes cosine of a complex number (\({\small\cos{z}}\)cos(z)) (function template)[edit] | |
(C++11)(C++11) | computes arc cosine (\({\small\arccos{x}}\)arccos(x)) (function)[edit] |
| applies the functionstd::acos to each element of valarray (function template)[edit] | |
C documentation forcacos | |