Iterator concepts | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Iterator primitives | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Algorithm concepts and utilities | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Indirect callable concepts | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Common algorithm requirements | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Utilities | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Iterator adaptors | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
Iterators are a generalization ofpointers that allow a C++ program to work with different data structures (for example,containers andranges(since C++20)) in a uniform manner. The iterator library provides definitions for iterators, as well as iterator traits, adaptors, and utility functions.
Since iterators are an abstraction of pointers, their semantics are a generalization of most of the semantics of pointers in C++. This ensures that everyfunction template that takes iterators works as well with regular pointers.
There arefive(until C++17)six(since C++17) kinds of iterators:LegacyInputIterator,LegacyOutputIterator,LegacyForwardIterator,LegacyBidirectionalIterator,LegacyRandomAccessIterator, andLegacyContiguousIterator(since C++17). (See alsoLegacyIterator for the most basic kind of iterator.)
Instead of being defined by specific types, each category of iterator is defined by the operations that can be performed on it. This definition means that any type that supports the necessary operations can be used as an iterator -- for example, a pointer supports all of the operations required byLegacyRandomAccessIterator, so a pointer can be used anywhere aLegacyRandomAccessIterator is expected.
All of the iterator categories (exceptLegacyOutputIterator) can be organized into a hierarchy, where more powerful iterator categories (e.g.LegacyRandomAccessIterator) support the operations of less powerful categories (e.g.LegacyInputIterator). If an iterator falls into one of these categories and also satisfies the requirements ofLegacyOutputIterator, then it is called amutable iterator and supportsboth input and output. Non-mutable iterators are calledconstant iterators.
Iterators are calledconstexpr iterators if all operations provided to meet iterator category requirements areconstexpr functions. | (since C++20) |
Iterator category | Operations and storage requirement | ||||||
---|---|---|---|---|---|---|---|
write | read | increment | decrement | random access | contiguous storage | ||
without multiple passes | with multiple passes | ||||||
LegacyIterator | Required | ||||||
LegacyOutputIterator | Required | Required | |||||
LegacyInputIterator (mutable if supports write operation) | Required | Required | |||||
LegacyForwardIterator (also satisfiesLegacyInputIterator) | Required | Required | Required | ||||
LegacyBidirectionalIterator (also satisfiesLegacyForwardIterator) | Required | Required | Required | Required | |||
LegacyRandomAccessIterator (also satisfiesLegacyBidirectionalIterator) | Required | Required | Required | Required | Required | ||
LegacyContiguousIterator[1] (also satisfiesLegacyRandomAccessIterator) | Required | Required | Required | Required | Required | Required |
Note: A type supporting the required operations in a row of the table above does not necessarily fall into the corresponding category, see the category page for the complete list of requirements.
An input iteratori supports the expression*i, resulting in a value of someobject typeT
, called thevalue type of the iterator.
An output iteratori has a non-empty set of types that arewritable(until C++20)indirectly_writable(since C++20) to the iterator; for each such typeT
, the expression*i= o is valid whereo is a value of typeT
.
For every iterator typeX
for which equality is defined(until C++20), there is a corresponding signedinteger(until C++20)integer-like(since C++20) type called thedifference type of the iterator.
Just as a regular pointer to anarray guarantees that there is a pointer value pointing past the last element of the array, so for any iterator type there is an iterator value that points past the last element of a corresponding sequence. Such a value is called apast-the-end value.
Values of an iteratori for which the expression*i is defined are calleddereferenceable. Thestandard library never assumes that past-the-end values are dereferenceable.
Iterators can also havesingular values that are not associated with any sequence. Results of most expressions are undefined for singular values; the only exceptions are
In these cases the singular value is overwritten the same way as any other value. Dereferenceable values are always non-singular.
Aninvalid iterator is an iterator that may be singular.
Most of the standard library’s algorithmic templates that operate on data structures have interfaces that use ranges.
An iteratorj is calledreachable from an iteratori if and only if there is a finite sequence of applications of the expression++i that makesi== j. Ifj is reachable fromi, they refer to elements of the same sequence. Arange is a pair of iterators that designate the beginning and end of the computation. A range Range | (until C++20) |
Arange can be denoted by either
Iterator-sentinel rangeAn iterator and a sentinel denoting a range are comparable. A sentinels is calledreachable from an iteratori if and only if there is a finite sequence of applications of the expression++i that makesi== s. Ifs is reachable fromi, Counted rangeAcounted rangei A counted rangei
| (since C++20) |
The result of the application of functions in the standard library to invalid ranges is undefined.
A new system of iterators based onconcepts that are different from C++17 iterators. While the basic taxonomy remains similar, the requirements for individual iterator categories are somewhat different.
Defined in namespace std | |
(C++20) | specifies that a type is indirectly readable by applying operator* (concept)[edit] |
(C++20) | specifies that a value can be written to an iterator's referenced object (concept)[edit] |
(C++20) | specifies that asemiregular type can be incremented with pre- and post-increment operators(concept)[edit] |
(C++20) | specifies that the increment operation on aweakly_incrementable type isequality-preserving and that the type isequality_comparable (concept)[edit] |
(C++20)(C++20) | specifies that a type behaves as a (signed) integer type (exposition-only concept*)[edit] |
(C++20) | specifies that objects of a type can be incremented and dereferenced (concept)[edit] |
(C++20) | specifies a type is a sentinel for aninput_or_output_iterator type(concept)[edit] |
(C++20) | specifies that the- operator can be applied to an iterator and a sentinel to calculate their difference in constant time (concept)[edit] |
(C++20) | specifies that a type is an input iterator, that is, its referenced values can be read and it can be both pre- and post-incremented (concept)[edit] |
(C++20) | specifies that a type is an output iterator for a given value type, that is, values of that type can be written to it and it can be both pre- and post-incremented (concept)[edit] |
(C++20) | specifies that aninput_iterator is a forward iterator, supporting equality comparison and multi-pass(concept)[edit] |
(C++20) | specifies that aforward_iterator is a bidirectional iterator, supporting movement backwards(concept)[edit] |
(C++20) | specifies that abidirectional_iterator is a random-access iterator, supporting advancement in constant time and subscripting(concept)[edit] |
(C++20) | specifies that arandom_access_iterator is a contiguous iterator, referring to elements that are contiguous in memory(concept)[edit] |
Defined in namespace std | |
(C++20) | computes the difference type of aweakly_incrementable type(class template)[edit] |
(C++20) | computes the value type of anindirectly_readable type(class template)[edit] |
(C++20)(C++20)(C++23)(C++20)(C++20)(C++20) | computes the associated types of an iterator (alias template)[edit] |
provides uniform interface to the properties of an iterator (class template)[edit] | |
empty class types used to indicate iterator categories (class)[edit] | |
(deprecated in C++17) | base class to ease the definition of required types for simple iterators (class template)[edit] |
Defined in namespace std::ranges | |
(C++20) | casts the result of dereferencing an object to its associated rvalue reference type (customization point object)[edit] |
(C++20) | swaps the values referenced by two dereferenceable objects (customization point object)[edit] |
A set of concepts and related utility templates designed to ease constraining common algorithm operations.
Defined in header <iterator> | |
Defined in namespace std | |
Indirect callable concepts | |
specifies that a callable type can be invoked with the result of dereferencing anindirectly_readable type(concept)[edit] | |
(C++20) | specifies that a callable type, when invoked with the result of dereferencing anindirectly_readable type, satisfiespredicate (concept)[edit] |
(C++20) | specifies that a callable type, when invoked with the result of dereferencing twoindirectly_readable types, satisfiespredicate (concept)[edit] |
specifies that a callable type, when invoked with the result of dereferencing twoindirectly_readable types, satisfiesequivalence_relation (concept)[edit] | |
(C++20) | specifies that a callable type, when invoked with the result of dereferencing twoindirectly_readable types, satisfiesstrict_weak_order (concept)[edit] |
Common algorithm requirements | |
(C++20) | specifies that values may be moved from anindirectly_readable type to anindirectly_writable type(concept)[edit] |
(C++20) | specifies that values may be moved from anindirectly_readable type to anindirectly_writable type and that the move may be performed via an intermediate object(concept)[edit] |
(C++20) | specifies that values may be copied from anindirectly_readable type to anindirectly_writable type(concept)[edit] |
(C++20) | specifies that values may be copied from anindirectly_readable type to anindirectly_writable type and that the copy may be performed via an intermediate object(concept)[edit] |
(C++20) | specifies that the values referenced by twoindirectly_readable types can be swapped(concept)[edit] |
(C++20) | specifies that the values referenced by twoindirectly_readable types can be compared(concept)[edit] |
(C++20) | specifies the common requirements of algorithms that reorder elements in place (concept)[edit] |
(C++20) | specifies the requirements of algorithms that merge sorted sequences into an output sequence by copying elements (concept)[edit] |
(C++20) | specifies the common requirements of algorithms that permute sequences into ordered sequences (concept)[edit] |
Utilities | |
(C++20) | computes the result of invoking a callable object on the result of dereferencing some set ofindirectly_readable types(alias template)[edit] |
(C++20) | helper template for specifying the constraints on algorithms that accept projections (alias template)[edit] |
(C++26) | computes the value type of anindirectly_readable type by projection(alias template)[edit] |
iterator adaptor for reverse-order traversal (class template)[edit] | |
(C++14) | creates astd::reverse_iterator of type inferred from the argument (function template)[edit] |
iterator adaptor for insertion at the end of a container (class template)[edit] | |
creates astd::back_insert_iterator of type inferred from the argument (function template)[edit] | |
iterator adaptor for insertion at the front of a container (class template)[edit] | |
creates astd::front_insert_iterator of type inferred from the argument (function template)[edit] | |
iterator adaptor for insertion into a container (class template)[edit] | |
creates astd::insert_iterator of type inferred from the argument (function template)[edit] | |
(C++23) | iterator adaptor that converts an iterator into a constant iterator (class template)[edit] |
(C++23) | computes a constant iterator type for a given type (alias template)[edit] |
(C++23) | computes a sentinel type to be used with constant iterators (alias template)[edit] |
(C++23) | creates astd::const_iterator of type inferred from the argument (function template)[edit] |
(C++23) | creates astd::const_sentinel of type inferred from the argument (function template)[edit] |
(C++11) | iterator adaptor which dereferences to an rvalue (class template)[edit] |
(C++20) | sentinel adaptor forstd::move_iterator (class template)[edit] |
(C++11) | creates astd::move_iterator of type inferred from the argument (function template)[edit] |
(C++20) | adapts an iterator type and its sentinel into a common iterator type (class template)[edit] |
(C++20) | default sentinel for use with iterators that know the bound of their range (class)[edit] |
(C++20) | iterator adaptor that tracks the distance to the end of the range (class template)[edit] |
(C++20) | sentinel that always compares unequal to anyweakly_incrementable type(class)[edit] |
input iterator that reads fromstd::basic_istream (class template)[edit] | |
output iterator that writes tostd::basic_ostream (class template)[edit] | |
input iterator that reads fromstd::basic_streambuf (class template)[edit] | |
output iterator that writes tostd::basic_streambuf (class template)[edit] |
Defined in header <iterator> | |
advances an iterator by given distance (function template)[edit] | |
returns the distance between two iterators (function template)[edit] | |
(C++11) | increment an iterator (function template)[edit] |
(C++11) | decrement an iterator (function template)[edit] |
(C++20) | advances an iterator by given distance or to a given bound (algorithm function object)[edit] |
(C++20) | returns the distance between an iterator and a sentinel, or between the beginning and end of a range (algorithm function object)[edit] |
(C++20) | increment an iterator by a given distance or to a bound (algorithm function object)[edit] |
(C++20) | decrement an iterator by a given distance or to a bound (algorithm function object)[edit] |
These non-member function templates provide a generic interface for containers, plain arrays, andstd::initializer_list.
Defined in header <array> | |
Defined in header <deque> | |
Defined in header <flat_map> | |
Defined in header <flat_set> | |
Defined in header <forward_list> | |
Defined in header <inplace_vector> | |
Defined in header <iterator> | |
Defined in header <list> | |
Defined in header <map> | |
Defined in header <regex> | |
Defined in header <set> | |
Defined in header <span> | |
Defined in header <string> | |
Defined in header <string_view> | |
Defined in header <unordered_map> | |
Defined in header <unordered_set> | |
Defined in header <vector> | |
Defined in namespace std | |
(C++11)(C++14) | returns an iterator to the beginning of a container or array (function template)[edit] |
(C++11)(C++14) | returns an iterator to the end of a container or array (function template)[edit] |
(C++14) | returns a reverse iterator to the beginning of a container or array (function template)[edit] |
(C++14) | returns a reverse end iterator for a container or array (function template)[edit] |
(C++17)(C++20) | returns the size of a container or array (function template)[edit] |
(C++17) | checks whether the container is empty (function template)[edit] |
(C++17) | obtains the pointer to the underlying array (function template)[edit] |
The following behavior-changing defect reports were applied retroactively to previously published C++ standards.
DR | Applied to | Behavior as published | Correct behavior |
---|---|---|---|
CWG 1181 | C++98 | array types could not be value types | they can |
LWG 208 | C++98 | past-the-end iterators were always non-singular | they can be singular |
LWG 278 | C++98 | the validity of an iterator was not defined | defined to be always non-singular |
LWG 324 | C++98 | output iterators had value types | output iterators have writable types instead |
LWG 407 | C++98 | singular iterators could not be destroyed | allowed |
LWG 408 (N3066) | C++98 | singular iterators could not be copied | allowed if they are value-initialized |
LWG 1185 (N3066) | C++98 | LegacyForwardIterator,LegacyBidirectionalIterator andLegacyRandomAccessIterator always satisfyLegacyOutputIterator | they might not satisfyLegacyOutputIterator |
LWG 1210 (N3066) | C++98 | the definition of iterator singularity and reachability depended on containers | depend on sequences instead |
LWG 3009 | C++17 | <string_view> did not provide the range access function templates | provides these templates |
LWG 3987 | C++23 | <flat_map> and<flat_set> did not provide the range access function templates | provide these templates |