Movatterモバイル変換


[0]ホーム

URL:


cppreference.com
Namespaces
Variants
    Actions

      catanhf, catanh, catanhl

      From cppreference.com
      <c‎ |numeric‎ |complex
       
       
       
      Complex number arithmetic
      Types and the imaginary constant
      (C99)
      (C99)    
      (C11)
      (C99)
      Manipulation
      (C99)
      (C99)
      (C99)
      (C99)
      (C99)
      (C99)
      Power and exponential functions
      (C99)
      (C99)
      (C99)
      (C99)
      Trigonometric functions
      (C99)
      (C99)
      (C99)
      (C99)
      (C99)
      (C99)
      Hyperbolic functions
      (C99)
      (C99)
      (C99)
      (C99)
      (C99)
      catanh
      (C99)
       
      Defined in header<complex.h>
      floatcomplex       catanhf(floatcomplex z);
      (1)(since C99)
      doublecomplex      catanh(doublecomplex z);
      (2)(since C99)
      longdoublecomplex catanhl(longdoublecomplex z);
      (3)(since C99)
      Defined in header<tgmath.h>
      #define atanh( z )
      (4)(since C99)
      1-3) Computes the complex arc hyperbolic tangent ofz with branch cuts outside the interval[−1; +1] along the real axis.
      4) Type-generic macro: Ifz has typelongdoublecomplex,catanhl is called. ifz has typedoublecomplex,catanh is called, ifz has typefloatcomplex,catanhf is called. Ifz is real or integer, then the macro invokes the corresponding real function (atanhf,atanh,atanhl). Ifz is imaginary, then the macro invokes the corresponding real version ofatan, implementing the formulaatanh(iy) = i atan(y), and the return type is imaginary.

      Contents

      [edit]Parameters

      z - complex argument

      [edit]Return value

      If no errors occur, the complex arc hyperbolic tangent ofz is returned, in the range of a half-strip mathematically unbounded along the real axis and in the interval[−iπ/2; +iπ/2] along the imaginary axis.

      [edit]Error handling and special values

      Errors are reported consistent withmath_errhandling

      If the implementation supports IEEE floating-point arithmetic,

      • catanh(conj(z))==conj(catanh(z))
      • catanh(-z)==-catanh(z)
      • Ifz is+0+0i, the result is+0+0i
      • Ifz is+0+NaNi, the result is+0+NaNi
      • Ifz is+1+0i, the result is+∞+0i andFE_DIVBYZERO is raised
      • Ifz isx+∞i (for any finite positive x), the result is+0+iπ/2
      • Ifz isx+NaNi (for any finite nonzero x), the result isNaN+NaNi andFE_INVALID may be raised
      • Ifz is+∞+yi (for any finite positive y), the result is+0+iπ/2
      • Ifz is+∞+∞i, the result is+0+iπ/2
      • Ifz is+∞+NaNi, the result is+0+NaNi
      • Ifz isNaN+yi (for any finite y), the result isNaN+NaNi andFE_INVALID may be raised
      • Ifz isNaN+∞i, the result is±0+iπ/2 (the sign of the real part is unspecified)
      • Ifz isNaN+NaNi, the result isNaN+NaNi

      [edit]Notes

      Although the C standard names this function "complex arc hyperbolic tangent", the inverse functions of the hyperbolic functions are the area functions. Their argument is the area of a hyperbolic sector, not an arc. The correct name is "complex inverse hyperbolic tangent", and, less common, "complex area hyperbolic tangent".

      Inverse hyperbolic tangent is a multivalued function and requires a branch cut on the complex plane. The branch cut is conventionally placed at the line segmentd(-∞,-1] and[+1,+∞) of the real axis.

      The mathematical definition of the principal value of the inverse hyperbolic tangent isatanh z =
      ln(1+z)-ln(z-1)
      2
      .


      For any z,atanh(z) =
      atan(iz)
      i

      [edit]Example

      Run this code
      #include <stdio.h>#include <complex.h> int main(void){doublecomplex z= catanh(2);printf("catanh(+2+0i) = %f%+fi\n",creal(z),cimag(z)); doublecomplex z2= catanh(conj(2));// or catanh(CMPLX(2, -0.0)) in C11printf("catanh(+2-0i) (the other side of the cut) = %f%+fi\n",creal(z2),cimag(z2)); // for any z, atanh(z) = atan(iz)/idoublecomplex z3= catanh(1+2*I);printf("catanh(1+2i) = %f%+fi\n",creal(z3),cimag(z3));doublecomplex z4=catan((1+2*I)*I)/I;printf("catan(i * (1+2i))/i = %f%+fi\n",creal(z4),cimag(z4));}

      Output:

      catanh(+2+0i) = 0.549306+1.570796icatanh(+2-0i) (the other side of the cut) = 0.549306-1.570796icatanh(1+2i) = 0.173287+1.178097icatan(i * (1+2i))/i = 0.173287+1.178097i

      [edit]References

      • C11 standard (ISO/IEC 9899:2011):
      • 7.3.6.3 The catanh functions (p: 193)
      • 7.25 Type-generic math <tgmath.h> (p: 373-375)
      • G.6.2.3 The catanh functions (p: 540-541)
      • G.7 Type-generic math <tgmath.h> (p: 545)
      • C99 standard (ISO/IEC 9899:1999):
      • 7.3.6.3 The catanh functions (p: 175)
      • 7.22 Type-generic math <tgmath.h> (p: 335-337)
      • G.6.2.3 The catanh functions (p: 475-476)
      • G.7 Type-generic math <tgmath.h> (p: 480)

      [edit]See also

      (C99)(C99)(C99)
      computes the complex arc hyperbolic sine
      (function)[edit]
      (C99)(C99)(C99)
      computes the complex arc hyperbolic cosine
      (function)[edit]
      (C99)(C99)(C99)
      computes the complex hyperbolic tangent
      (function)[edit]
      (C99)(C99)(C99)
      computes inverse hyperbolic tangent (\({\small\operatorname{artanh}{x} }\)artanh(x))
      (function)[edit]
      Retrieved from "https://en.cppreference.com/mwiki/index.php?title=c/numeric/complex/catanh&oldid=96166"

      [8]ページ先頭

      ©2009-2025 Movatter.jp