Movatterモバイル変換


[0]ホーム

URL:


1932
Annual Reviews logo
Skip to content

Review Article

Free

Wrapped Up: The Motility of Polarly Flagellated Bacteria

Abstract

A huge number of bacterial species are motile by flagella, which allow them to actively move toward favorable environments and away from hazardous areas and to conquer new habitats. The general perception of flagellum-mediated movement and chemotaxis is dominated by theEscherichia coli paradigm, with its peritrichous flagellation and its famous run-and-tumble navigation pattern, which has shaped the view on how bacteria swim and navigate in chemical gradients. However, a significant amount—more likely the majority—of bacterial species exhibit a (bi)polar flagellar localization pattern instead of lateral flagella. Accordingly, these species have evolved very different mechanisms for navigation and chemotaxis. Here, we review the earlier and recent findings on the various modes of motility mediated by polar flagella.

    Loading

    Article metrics loading...

    /content/journals/10.1146/annurev-micro-041122-101032
    2022-09-08
    2025-11-26
    Download as PowerPoint
    Loading full text...

    Full text loading...

    /deliver/fulltext/micro/76/1/annurev-micro-041122-101032.html?itemId=/content/journals/10.1146/annurev-micro-041122-101032&mimeType=html&fmt=ahah

    Literature Cited

    1. 1.
      AlirezaeizanjaniZ,GroßmannR,PfeiferV,HintscheM,BetaC.2020. Chemotaxis strategies of bacteria with multiple run modes.Sci. Adv.6:eaaz6153
      [Google Scholar]
    2. 2.
      AllenRD,BaumannP.1971. Structure and arrangement of flagella in species of the genusBeneckea andPhotobacterium fischeri.J. Bacteriol.107:295–302
      [Google Scholar]
    3. 3.
      AltindalT,XieL,WuX-L.2011. Implications of three-step swimming patterns in bacterial chemotaxis.Biophys. J.100:32–41
      [Google Scholar]
    4. 4.
      AntaniJD,SumaliAX,LeleTP,LelePP2021. Asymmetric random walks reveal that the chemotaxis network modulates flagellar rotational bias inHelicobacter pylori.eLife10:e63936
      [Google Scholar]
    5. 5.
      AsakuraS.1970. Polymerization of flagellin and polymorphism of flagella.Adv. Biophys.1:99–155
      [Google Scholar]
    6. 6.
      AschtgenM-S,BrennanCA,NikolakakisK,CohenS,McFall-NgaiM,RubyEG.2019. Insights into flagellar function and mechanism from the squid-vibrio symbiosis.npj Biofilms Microbiomes5:32
      [Google Scholar]
    7. 7.
      BaeleM,DecostereA,VandammeP,CeelenL,HellemansA et al.2008. Isolation and characterization ofHelicobacter suis sp. nov. from pig stomachs.Int. J. Syst. Evol. Microbiol.58:1350–58
      [Google Scholar]
    8. 8.
      BarbaraGM,MitchellJG.2003. Bacterial tracking of motile algae.FEMS Microbiol. Ecol.44:79–87
      [Google Scholar]
    9. 9.
      BeebyM,RibardoDA,BrennanCA,RubyEG,JensenGJ,HendrixsonDR.2016. Diverse high-torque bacterial flagellar motors assemble wider stator rings using a conserved protein scaffold.PNAS113:E1917–26
      [Google Scholar]
    10. 10.
      BergHC.2003. The rotary motor of bacterial flagella.Annu. Rev. Biochem.72:19–54
      [Google Scholar]
    11. 11.
      BergHC.2004.E. coli in Motion New York: Springer
      [Google Scholar]
    12. 12.
      BergHC,AndersonRA.1973. Bacteria swim by rotating their flagellar filaments.Nature245:380–82
      [Google Scholar]
    13. 13.
      BergHC,BrownDA.1972. Chemotaxis inEscherichia coli analysed by three-dimensional tracking.Nature239:500–4
      [Google Scholar]
    14. 14.
      BergHC,PurcellEM.1977. Physics of chemoreception.Biophys.J.20:2193–219
      [Google Scholar]
    15. 15.
      BiS,SourjikV.2018. Stimulus sensing and signal processing in bacterial chemotaxis.Curr. Opin. Microbiol.45:22–29
      [Google Scholar]
    16. 16.
      BubendorferS,KoltaiM,RossmannF,SourjikV,ThormannKM.2014. Secondary bacterial flagellar system improves bacterial spreading by increasing the directional persistence of swimming.PNAS111:11485–90
      [Google Scholar]
    17. 17.
      BuderJ.1915. Zur Kenntnis desThiospirillum jenense und seiner Reaktionen auf Lichtreize.Jahrb. Wiss. Bot.56:529–84
      [Google Scholar]
    18. 18.
      CaiQ,LiZ,OuyangQ,LuoC,GordonVD2016. Singly flagellatedPseudomonas aeruginosa chemotaxes efficiently by unbiased motor regulation.mBio7:e00013
      [Google Scholar]
    19. 19.
      CalladineCR.1975. Construction of bacterial flagella.Nature255:121–24
      [Google Scholar]
    20. 20.
      CalldineCR.1978. Change of waveform in bacterial flagella: the role of mechanics at the molecular level.J. Mol. Biol.118:457–79
      [Google Scholar]
    21. 21.
      ChuJ,LiuJ,HooverTR.2020. Phylogenetic distribution, ultrastructure, and function of bacterial flagellar sheaths.Biomolecules10:363
      [Google Scholar]
    22. 22.
      CohenEJ,NakaneD,KabataY,HendrixsonDR,NishizakaT,BeebyM.2020.Campylobacter jejuni motility integrates specialized cell shape, flagellar filament, and motor, to coordinate action of its opposed flagella.PLOS Pathog16:e1008620
      [Google Scholar]
    23. 23.
      ConstantinoMA,JabbarzadehM,FuHC,BansilR.2016. Helical and rod-shaped bacteria swim in helical trajectories with little additional propulsion from helical shape.Sci. Adv.2:e1601661
      [Google Scholar]
    24. 24.
      ConstantinoMA,JabbarzadehM,FuHC,ShenZ,FoxJG et al.2018. Bipolar lophotrichousHelicobacter suis combine extended and wrapped flagella bundles to exhibit multiple modes of motility.Sci. Rep.8:14415
      [Google Scholar]
    25. 25.
      DarntonNC,BergHC.2007. Force-extension measurements on bacterial flagella: triggering polymorphic transformations.Biophys. J.92:2230–36
      [Google Scholar]
    26. 26.
      DarntonNC,TurnerL,RojevskyS,BergHC.2007. On torque and tumbling in swimmingEscherichia coli.J. Bacteriol.189:1756–64
      [Google Scholar]
    27. 27.
      DavisML,MounteerLC,StevensLK,MillerCD,ZhouA.2011. 2D motility tracking ofPseudomonas putida KT2440 in growth phases using video microscopy.J. Biosci. Bioeng.111:605–11
      [Google Scholar]
    28. 28.
      DuffyKJ,FordRM.1997. Turn angle and run time distributions characterize swimming behavior forPseudomonas putida.J. Bacteriol.179:1428–30
      [Google Scholar]
    29. 29.
      Faulds-PainA,BirchallC,AldridgeC,SmithWD,GrimaldiG et al.2011. Flagellin redundancy inCaulobacter crescentus and its implications for flagellar filament assembly.J. Bacteriol.193:2695–707
      [Google Scholar]
    30. 30.
      GrognotM,TauteKM.2021. More than propellers: how flagella shape bacterial motility behaviors.Curr. Opin. Microbiol.61:73–81
      [Google Scholar]
    31. 31.
      GuttenplanSB,ShawS,KearnsDB.2013. The cell biology of peritrichous flagella inBacillus subtilis.Mol. Microbiol.87:211–29
      [Google Scholar]
    32. 32.
      HallPG,KriegNR.1983. Swarming ofAzospirillum brasilense on solid media.Can. J. Microbiol.29:1592–94
      [Google Scholar]
    33. 33.
      HarwoodCS,FosnaughK,DispensaM.1989. Flagellation ofPseudomonas putida and analysis of its motile behavior.J. Bacteriol.171:4063–66
      [Google Scholar]
    34. 34.
      HarwoodCS,ParalesRE,DispensaM.1990. Chemotaxis ofPseudomonas putida toward chlorinated benzoates.Appl. Environ. Microbiol.56:1501–3
      [Google Scholar]
    35. 35.
      HasegawaK,YamashitaI,NambaK.1998. Quasi- and nonequivalence in the structure of bacterial flagellar filament.Biophys. J.74:569–75
      [Google Scholar]
    36. 36.
      HintscheM,WaljorV,GroßmannR,KühnMJ,ThormannKM et al.2017. A polar bundle of flagella can drive bacterial swimming by pushing, pulling, or coiling around the cell body.Sci. Rep.7:16771
      [Google Scholar]
    37. 37.
      HotaniH.1982. Micro-video study of moving bacterial flagellar filaments: III. Cyclic transformation induced by mechanical force.J. Mol. Biol.156:791–806
      [Google Scholar]
    38. 38.
      HowittMR,LeeJY,LertsethtakarnP,VogelmannR,JoubertL-M et al.2011. ChePep controlsHelicobacter pylori infection of the gastric glands and chemotaxis in the epsilonproteobacteria.mBio2:e00098–11
      [Google Scholar]
    39. 39.
      IslamST,MignotT.2015. The mysterious nature of bacterial surface (gliding) motility: a focal adhesion-based mechanism inMyxococcus xanthus.Sem. Cell. Dev. Biol.46:143–54
      [Google Scholar]
    40. 40.
      JaroschR.1967. Studien zur Bewegungsmechanik der Bakterien und Spirochäten des Hochmoores.Österr. Bot. Z.114:255–306
      [Google Scholar]
    41. 41.
      JarrellKF,McBrideMJ.2008. The surprisingly diverse ways that prokaryotes move.Nat. Rev. Microbiol.6:466–76
      [Google Scholar]
    42. 42.
      JohnsonS,FurlongEJ,DemeJC,NordAL,CaesarJJE et al.2021. Molecular structure of the intact bacterial flagellar basal body.Nat. Microbiol.6:712–21
      [Google Scholar]
    43. 43.
      JonesCW,ArmitageJP.2015. Positioning of bacterial chemoreceptors.Trends Microbiol23:247–56
      [Google Scholar]
    44. 44.
      KarlinseyJE,TanakaS,BettenworthV,YamaguchiS,BoosW et al.2000. Completion of the hook-basal body complex of theSalmonella typhimurium flagellum is coupled to FlgM secretion and fliC transcription.Mol. Microbiol.37:1220–31
      [Google Scholar]
    45. 45.
      KearnsDB.2010. A field guide to bacterial swarming motility.Nat. Rev. Microbiol.8:634–44
      [Google Scholar]
    46. 46.
      KimM,BirdJC,ParysAJV,BreuerKS,PowersTR.2003. A macroscopic scale model of bacterial flagellar bundling.PNAS100:15481–85
      [Google Scholar]
    47. 47.
      KimSY,ThanhXTT,JeongK,KimSB,PanSO et al.2014. Contribution of six flagellin genes to the flagellum biogenesis ofVibrio vulnificus and in vivo invasion.Infect. Immun.82:29–42
      [Google Scholar]
    48. 48.
      KinositaY,KikuchiY,MikamiN,NakaneD,NishizakaT.2018. Unforeseen swimming and gliding mode of an insect gut symbiont,Burkholderia sp. RPE64, with wrapping of the flagella around its cell body.ISME J12:838–48
      [Google Scholar]
    49. 49.
      KinscherfTG,WillisDK.1999. Swarming byPseudomonas syringae B728a requiresgacS (lemA) andgacA but not the acyl-homoserine lactone biosynthetic geneahlI.J. Bacteriol.181:4133–36
      [Google Scholar]
    50. 50.
      KöhlerT,CurtyLK,BarjaF,van DeldenC,PechèreJC.2000. Swarming ofPseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili.J. Bacteriol.182:5990–96
      [Google Scholar]
    51. 51.
      KoyasuS,ShirakiharaY.1984.Caulobacter crescentus flagellar filament has a right-handed helical form.J. Mol. Biol.173:125–30
      [Google Scholar]
    52. 52.
      KriegNR.1976. Biology of the chemoheterotrophic spirilla.Bacteriol. Rev.40:55–115
      [Google Scholar]
    53. 53.
      KühnMJ,SchmidtFK,EckhardtB,ThormannKM.2017. Bacteria exploit a polymorphic instability of the flagellar filament to escape from traps.PNAS114:6340–45
      [Google Scholar]
    54. 54.
      KühnMJ,SchmidtFK,FarthingNE,RossmannFM,HelmB et al.2018. Spatial arrangement of several flagellins within bacterial flagella improves motility in different environments.Nat. Commun.9:5369
      [Google Scholar]
    55. 55.
      LambertC,EvansKJ,TillR,HobleyL,CapenessM et al.2006. Characterizing the flagellar filament and the role of motility in bacterial prey-penetration byBdellovibrio bacteriovorus.Mol. Microbiol.60:274–86
      [Google Scholar]
    56. 56.
      LaventieB-J,SangermaniM,EstermannF,ManfrediP,PlanesR et al.2019. A surface-induced asymmetric program promotes tissue colonization byPseudomonas aeruginosa.Cell Host Microbe25:140–52
      [Google Scholar]
    57. 57.
      LeifsonE,CosenzaBJ,MurchelanoR,CleverdonRC.1964. Motile marine bacteria. I. Techniques, ecology, and general characteristics.J. Bacteriol.87:652–66
      [Google Scholar]
    58. 58.
      LeifsonE,HughR1953. Variation in shape and arrangement of bacterial flagella.J. Bacteriol.65:263–71
      [Google Scholar]
    59. 59.
      LertsethtakarnP,OttemannKM,HendrixsonDR.2011. Motility and chemotaxis inCampylobacter andHelicobacter.Annu. Rev. Microbiol.65:389–410
      [Google Scholar]
    60. 60.
      LiuB,GulinoM,MorseM,TangJX,PowersTR,BreuerKS.2014. Helical motion of the cell body enhancesCaulobacter crescentus motility.PNAS111:11252–56
      [Google Scholar]
    61. 61.
      MacnabRM.1977. Bacterial flagella rotating in bundles: a study in helical geometry.PNAS74:221–25
      [Google Scholar]
    62. 62.
      MacnabRM,OrnstonMK.1977. Normal-to-curly flagellar transitions and their role in bacterial tumbling: stabilization of an alternative quaternary structure by mechanical force.J. Mol. Biol.112:1–30
      [Google Scholar]
    63. 63.
      MagariyamaY,MasudaS,TakanoY,OhtaniT,KudoS.2001. Difference between forward and backward swimming speeds of the single polar-flagellated bacterium,Vibrio alginolyticus.FEMS Microbiol. Lett.205:343–47
      [Google Scholar]
    64. 64.
      Maki-YonekuraS,YonekuraK,NambaK.2010. Conformational change of flagellin for polymorphic supercoiling of the flagellar filament.Nat. Struct. Mol. Biol.17:4417–22
      [Google Scholar]
    65. 65.
      MarshallB,WarrenJR.1984. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration.Lancet323:1311–15
      [Google Scholar]
    66. 66.
      MartínezLE,HardcastleJM,WangJ,PincusZ,TsangJ et al.2016.Helicobacter pylori strains vary cell shape and flagellum number to maintain robust motility in viscous environments.Mol. Microbiol.99:88–110
      [Google Scholar]
    67. 67.
      MatillaMA,RamosJL,DuqueE,de Dios AlchéJ,Espinosa-UrgelM,Ramos-GonzálezMI.2007. Temperature and pyoverdine-mediated iron acquisition control surface motility ofPseudomonas putida.Environ. Microbiol.9:1842–50
      [Google Scholar]
    68. 68.
      MaurielloEMF,JonesC,MoineA,ArmitageJP.2018. Cellular targeting and segregation of bacterial chemosensory systems.FEMS Microbiol. Rev.42:462–76
      [Google Scholar]
    69. 69.
      McBrideMJ,NakaneD.2015.Flavobacterium gliding motility and the type IX secretion system.Curr. Opin. Microbiol.28:72–77
      [Google Scholar]
    70. 70.
      McCarterL,SilvermanM.1990. Surface-induced swarmer cell differentiation ofVibrio parahaemolyticus.Mol. Microbiol.4:71057–62
      [Google Scholar]
    71. 71.
      McCarterLL.2001. Polar flagellar motility of the Vibrionaceae.Microbiol. Mol. Biol. Rev.65:445–62
      [Google Scholar]
    72. 72.
      McCarterLL.2004. Dual flagellar systems enable motility under different circumstances.J. Mol. Microbiol. Biotechnol.7:18–29
      [Google Scholar]
    73. 73.
      MerinoS,ShawJG,TomásJM.2006. Bacterial lateral flagella: an inducible flagella system.FEMS Microbiol. Lett.263:127–35
      [Google Scholar]
    74. 74.
      MetznerP.1920. Die Bewegung and Reizbeantwortung der bipolar begeißelten Spirillen.Naturwissenschaften8:957–58
      [Google Scholar]
    75. 75.
      MignotT,NöllmannM2017. New insights into the function of a versatile class of membrane molecular motors from studies ofMyxococcus xanthus surface (gliding) motility.Microb. Cell4:98–100
      [Google Scholar]
    76. 76.
      MukherjeeT,ElmasM,VoL,AlexiadesV,HongT,AlexandreG.2019. Multiple CheY homologs control swimming reversals and transient pauses inAzospirillum brasilense.Biophys. J.116:1527–37
      [Google Scholar]
    77. 77.
      MuraleedharanS,FreitasC,MannP,GlatterT,RinggaardS.2018. A cell length-dependent transition in MinD-dynamics promotes a switch in division-site placement and preservation of proliferating elongatedVibrio parahaemolyticus swarmer cells.Mol. Microbiol.109:3365–84
      [Google Scholar]
    78. 78.
      MuratD,HérisseM,EspinosaL,BossaA,AlbertoF,WuL-F2015. Opposite and coordinated rotation of amphitrichous flagella governs oriented swimming and reversals in a magnetotacticSpirillum.J. Bacteriol.197:3275–82
      [Google Scholar]
    79. 79.
      NakamuraS.2020. Spirochete flagella and motility.Biomolecules10:E550
      [Google Scholar]
    80. 80.
      NavaLG,GroßmannR,HintscheM,BetaC,PeruaniF.2020. A novel approach to chemotaxis: active particles guided by internal clocks.Europhys. Lett.130:68002
      [Google Scholar]
    81. 81.
      OhbayashiT,TakeshitaK,KitagawaW,NikohN,KogaR et al.2015. Insect's intestinal organ for symbiont sorting.PNAS112:5179–88
      [Google Scholar]
    82. 82.
      O'SheaTM,DeLoney-MarinoCR,ShibataS,AizawaS-I,WolfeAJ,VisickKL2005. Magnesium promotes flagellation ofVibrio fischeri.J. Bacteriol.187:2058–65
      [Google Scholar]
    83. 83.
      PadgettPJ,FriedmanMW,KriegNR.1983. Straight mutants ofSpirillum volutans can swim.J. Bacteriol.153:1543–44
      [Google Scholar]
    84. 84.
      ParkJ,KimY,LeeW,LimS.2022. Modeling of lophotrichous bacteria reveals key factors for swimming reorientation.Sci. Rep.12:6482
      [Google Scholar]
    85. 85.
      PingL,BirkenbeilJ,MonajembashiS.2013. Swimming behavior of the monotrichous bacteriumPseudomonas fluorescens SBW25.FEMS Microbiol. Ecol.86:36–44
      [Google Scholar]
    86. 86.
      PohlO,HintscheM,AlirezaeizanjaniZ,SeyrichM,BetaC,StarkH.2017. Inferring the chemotactic strategy ofP. putida andE. coli using modified Kramers-Moyal coefficients.PLOS Comput. Biol.13:e1005329
      [Google Scholar]
    87. 87.
      PurcellEM.2014. Life at low Reynolds number.Am. J. Phys.45:3
      [Google Scholar]
    88. 88.
      QianC,WongCC,SwarupS,ChiamK-H.2013. Bacterial tethering analysis reveals a “run-reverse-turn” mechanism forPseudomonas species motility.Appl. Environ. Microbiol.79:4734–43
      [Google Scholar]
    89. 89.
      RaatzM,HintscheM,BahrsM,ThevesM,BetaC.2015. Swimming patterns of a polarly flagellated bacterium in environments of increasing complexity.Eur. Phys. J. Spec. Top.224:1185–98
      [Google Scholar]
    90. 90.
      ReichertK.1909. Über die Sichtbarmachung der Geisseln und die Geisselbewegung der Bakterien.Z. Bakteriol. Parasitenkd. Infektionskr.51:14–94
      [Google Scholar]
    91. 91.
      SamateyFA,ImadaK,NagashimaS,VondervisztF,KumasakaT et al.2001. Structure of the bacterial flagellar protofilament and implications for a switch for supercoiling.Nature410:331–37
      [Google Scholar]
    92. 92.
      SchäfferC,MessnerP.2017. Emerging facets of prokaryotic glycosylation.FEMS Microbiol. Rev.41:49–91
      [Google Scholar]
    93. 93.
      SchneiderWR,DoetschRN.1974. Effect of viscosity on bacterial motility.J. Bacteriol.117:696–701
      [Google Scholar]
    94. 94.
      SchuhmacherJS,ThormannKM,BangeG.2015. How bacteria maintain location and number of flagella?.FEMS Microbiol. Rev.39:812–22
      [Google Scholar]
    95. 95.
      ShimadaT,SakazakiR,SuzukiK.1985. Peritrichous flagella in mesophilic strains ofAeromonas.Jpn. J. Med. Sci. Biol.38:141–45
      [Google Scholar]
    96. 96.
      ShinodaS,OkamotoK.1977. Formation and function ofVibrio parahaemolyticus lateral flagella.J. Bacteriol.129:1266–71
      [Google Scholar]
    97. 97.
      ShrivastavaA,BergHC.2015. Towards a model forFlavobacterium gliding.Curr. Opin. Microbiol.28:93–97
      [Google Scholar]
    98. 98.
      SilvermanM,SimonM.1974. Flagellar rotation and the mechanism of bacterial motility.Nature249:73–74
      [Google Scholar]
    99. 99.
      SonK,GuastoJS,StockerR.2013. Bacteria can exploit a flagellar buckling instability to change direction.Nat. Phys.9:494–98
      [Google Scholar]
    100. 100.
      SonK,MenolascinaF,StockerR.2016. Speed-dependent chemotactic precision in marine bacteria.PNAS113:8624–29
      [Google Scholar]
    101. 101.
      SowaY,BerryRM.2008. Bacterial flagellar motor.Q. Rev. Biophys.41:103–32
      [Google Scholar]
    102. 102.
      StockerR.2011. Reverse and flick: hybrid locomotion in bacteria.PNAS108:2635–36
      [Google Scholar]
    103. 103.
      StockerR.2012. Marine microbes see a sea of gradients.Science338:628–33
      [Google Scholar]
    104. 104.
      TakeshitaK,KikuchiY.2017.Riptortus pedestris andBurkholderia symbiont: an ideal model system for insect-microbe symbiotic associations.Res. Microbiol.168:175–87
      [Google Scholar]
    105. 105.
      TanJ,ZhangX,WangX,XuC,ChangS et al.2021. Structural basis of assembly and torque transmission of the bacterial flagellar motor.Cell184:2665–79
      [Google Scholar]
    106. 106.
      TauteKM,GudeS,TansSJ,ShimizuTS.2015. High-throughput 3D tracking of bacteria on a standard phase contrast microscope.Nat. Commun.6:8776
      [Google Scholar]
    107. 107.
      TaylorBL,KoshlandDE.1974. Reversal of flagellar rotation in monotrichous and peritrichous bacteria: generation of changes in direction.J. Bacteriol.119:640–42
      [Google Scholar]
    108. 108.
      ThevesM,TaktikosJ,ZaburdaevV,StarkH,BetaC.2013. A bacterial swimmer with two alternating speeds of propagation.Biophys. J.105:1915–24
      [Google Scholar]
    109. 109.
      ThevesM,TaktikosJ,ZaburdaevV,StarkH,BetaC.2015. Random walk patterns of a soil bacterium in open and confined environments.Europhys. Lett.109:28007
      [Google Scholar]
    110. 110.
      TianM,WuZ,ZhangR,YuanJ.2022. A new mode of swimming in singly flagellatedPseudomonas aeruginosa.PNAS119:14e2120508119
      [Google Scholar]
    111. 111.
      TsokosCG,LaubMT.2012. Polarity and cell fate asymmetry inCaulobacter crescentus.Curr. Opin. Microbiol.15:744–50
      [Google Scholar]
    112. 112.
      TurnerL,RyuWS,BergHC.2000. Real-time imaging of fluorescent flagellar filaments.J. Bacteriol.182:2793–801
      [Google Scholar]
    113. 113.
      van LeeuwenhoekA.1722.Arcana Naturae Detecta. Lugduni Batavorum: Apud Joh. Arnold Langerak
      [Google Scholar]
    114. 114.
      VisickKL,StabbEV,RubyEG.2021. A lasting symbiosis: howVibrio fischeri finds a squid partner and persists within its natural host.Nat. Rev. Microbiol.19:654–65
      [Google Scholar]
    115. 115.
      WadhwaN,BergHC.2022. Bacterial motility: machinery and mechanisms.Nat. Rev. Microbiol.20:3161–73
      [Google Scholar]
    116. 116.
      WangF,BurrageAM,PostelS,ClarkRE,OrlovaA et al.2017. A structural model of flagellar filament switching across multiple bacterial species.Nat. Commun.8:960
      [Google Scholar]
    117. 117.
      XieL,AltindalT,ChattopadhyayS,WuX-L.2011. Bacterial flagellum as a propeller and as a rudder for efficient chemotaxis.PNAS108:2246–51
      [Google Scholar]
    118. 118.
      XieL,LuC,WuX-L.2015. Marine bacterial chemoresponse to a stepwise chemoattractant stimulus.Biophys. J.108:766–74
      [Google Scholar]
    119. 119.
      YamashitaL,HasegawaK,SuzukiH,VondervisztF,Mimori-KiyosueY,NambaK.1998. Structure and switching of bacterial flagellar filaments studied by X-ray fiber diffraction.Nat. Struct. Mol. Biol.5:125–32
      [Google Scholar]
    120. 120.
      ZhulinIB,ArmitageJP.1993. Motility, chemokinesis, and methylation-independent chemotaxis inAzospirillum brasilense.J. Bacteriol.175:952–58
      [Google Scholar]
    /content/journals/10.1146/annurev-micro-041122-101032
    Loading
    Wrapped Up: The Motility of Polarly Flagellated Bacteria
    Annual Review of Microbiology76, 349 (2022);https://doi.org/10.1146/annurev-micro-041122-101032
    /content/journals/10.1146/annurev-micro-041122-101032
    /content/journals/10.1146/annurev-micro-041122-101032
    Loading

    Data & Media loading...

    Most Read This Month

    Article
    content/journals/micro
    Journal
    5
    3
    false
    en
    Loading

    Most CitedMost Cited RSS feed

    Related Articles from Annual Reviews

    /content/journals/10.1146/annurev-micro-041122-101032
    dcterms_title,dcterms_subject,pub_keyword
    -contentType:Journal -contentType:Contributor -contentType:Concept -contentType:Institution
    4
    4

    Literature Cited

    1. 1.
      AlirezaeizanjaniZ,GroßmannR,PfeiferV,HintscheM,BetaC.2020. Chemotaxis strategies of bacteria with multiple run modes.Sci. Adv.6:eaaz6153
      [Google Scholar]
    2. 2.
      AllenRD,BaumannP.1971. Structure and arrangement of flagella in species of the genusBeneckea andPhotobacterium fischeri.J. Bacteriol.107:295–302
      [Google Scholar]
    3. 3.
      AltindalT,XieL,WuX-L.2011. Implications of three-step swimming patterns in bacterial chemotaxis.Biophys. J.100:32–41
      [Google Scholar]
    4. 4.
      AntaniJD,SumaliAX,LeleTP,LelePP2021. Asymmetric random walks reveal that the chemotaxis network modulates flagellar rotational bias inHelicobacter pylori.eLife10:e63936
      [Google Scholar]
    5. 5.
      AsakuraS.1970. Polymerization of flagellin and polymorphism of flagella.Adv. Biophys.1:99–155
      [Google Scholar]
    6. 6.
      AschtgenM-S,BrennanCA,NikolakakisK,CohenS,McFall-NgaiM,RubyEG.2019. Insights into flagellar function and mechanism from the squid-vibrio symbiosis.npj Biofilms Microbiomes5:32
      [Google Scholar]
    7. 7.
      BaeleM,DecostereA,VandammeP,CeelenL,HellemansA et al.2008. Isolation and characterization ofHelicobacter suis sp. nov. from pig stomachs.Int. J. Syst. Evol. Microbiol.58:1350–58
      [Google Scholar]
    8. 8.
      BarbaraGM,MitchellJG.2003. Bacterial tracking of motile algae.FEMS Microbiol. Ecol.44:79–87
      [Google Scholar]
    9. 9.
      BeebyM,RibardoDA,BrennanCA,RubyEG,JensenGJ,HendrixsonDR.2016. Diverse high-torque bacterial flagellar motors assemble wider stator rings using a conserved protein scaffold.PNAS113:E1917–26
      [Google Scholar]
    10. 10.
      BergHC.2003. The rotary motor of bacterial flagella.Annu. Rev. Biochem.72:19–54
      [Google Scholar]
    11. 11.
      BergHC.2004.E. coli in Motion New York: Springer
      [Google Scholar]
    12. 12.
      BergHC,AndersonRA.1973. Bacteria swim by rotating their flagellar filaments.Nature245:380–82
      [Google Scholar]
    13. 13.
      BergHC,BrownDA.1972. Chemotaxis inEscherichia coli analysed by three-dimensional tracking.Nature239:500–4
      [Google Scholar]
    14. 14.
      BergHC,PurcellEM.1977. Physics of chemoreception.Biophys.J.20:2193–219
      [Google Scholar]
    15. 15.
      BiS,SourjikV.2018. Stimulus sensing and signal processing in bacterial chemotaxis.Curr. Opin. Microbiol.45:22–29
      [Google Scholar]
    16. 16.
      BubendorferS,KoltaiM,RossmannF,SourjikV,ThormannKM.2014. Secondary bacterial flagellar system improves bacterial spreading by increasing the directional persistence of swimming.PNAS111:11485–90
      [Google Scholar]
    17. 17.
      BuderJ.1915. Zur Kenntnis desThiospirillum jenense und seiner Reaktionen auf Lichtreize.Jahrb. Wiss. Bot.56:529–84
      [Google Scholar]
    18. 18.
      CaiQ,LiZ,OuyangQ,LuoC,GordonVD2016. Singly flagellatedPseudomonas aeruginosa chemotaxes efficiently by unbiased motor regulation.mBio7:e00013
      [Google Scholar]
    19. 19.
      CalladineCR.1975. Construction of bacterial flagella.Nature255:121–24
      [Google Scholar]
    20. 20.
      CalldineCR.1978. Change of waveform in bacterial flagella: the role of mechanics at the molecular level.J. Mol. Biol.118:457–79
      [Google Scholar]
    21. 21.
      ChuJ,LiuJ,HooverTR.2020. Phylogenetic distribution, ultrastructure, and function of bacterial flagellar sheaths.Biomolecules10:363
      [Google Scholar]
    22. 22.
      CohenEJ,NakaneD,KabataY,HendrixsonDR,NishizakaT,BeebyM.2020.Campylobacter jejuni motility integrates specialized cell shape, flagellar filament, and motor, to coordinate action of its opposed flagella.PLOS Pathog16:e1008620
      [Google Scholar]
    23. 23.
      ConstantinoMA,JabbarzadehM,FuHC,BansilR.2016. Helical and rod-shaped bacteria swim in helical trajectories with little additional propulsion from helical shape.Sci. Adv.2:e1601661
      [Google Scholar]
    24. 24.
      ConstantinoMA,JabbarzadehM,FuHC,ShenZ,FoxJG et al.2018. Bipolar lophotrichousHelicobacter suis combine extended and wrapped flagella bundles to exhibit multiple modes of motility.Sci. Rep.8:14415
      [Google Scholar]
    25. 25.
      DarntonNC,BergHC.2007. Force-extension measurements on bacterial flagella: triggering polymorphic transformations.Biophys. J.92:2230–36
      [Google Scholar]
    26. 26.
      DarntonNC,TurnerL,RojevskyS,BergHC.2007. On torque and tumbling in swimmingEscherichia coli.J. Bacteriol.189:1756–64
      [Google Scholar]
    27. 27.
      DavisML,MounteerLC,StevensLK,MillerCD,ZhouA.2011. 2D motility tracking ofPseudomonas putida KT2440 in growth phases using video microscopy.J. Biosci. Bioeng.111:605–11
      [Google Scholar]
    28. 28.
      DuffyKJ,FordRM.1997. Turn angle and run time distributions characterize swimming behavior forPseudomonas putida.J. Bacteriol.179:1428–30
      [Google Scholar]
    29. 29.
      Faulds-PainA,BirchallC,AldridgeC,SmithWD,GrimaldiG et al.2011. Flagellin redundancy inCaulobacter crescentus and its implications for flagellar filament assembly.J. Bacteriol.193:2695–707
      [Google Scholar]
    30. 30.
      GrognotM,TauteKM.2021. More than propellers: how flagella shape bacterial motility behaviors.Curr. Opin. Microbiol.61:73–81
      [Google Scholar]
    31. 31.
      GuttenplanSB,ShawS,KearnsDB.2013. The cell biology of peritrichous flagella inBacillus subtilis.Mol. Microbiol.87:211–29
      [Google Scholar]
    32. 32.
      HallPG,KriegNR.1983. Swarming ofAzospirillum brasilense on solid media.Can. J. Microbiol.29:1592–94
      [Google Scholar]
    33. 33.
      HarwoodCS,FosnaughK,DispensaM.1989. Flagellation ofPseudomonas putida and analysis of its motile behavior.J. Bacteriol.171:4063–66
      [Google Scholar]
    34. 34.
      HarwoodCS,ParalesRE,DispensaM.1990. Chemotaxis ofPseudomonas putida toward chlorinated benzoates.Appl. Environ. Microbiol.56:1501–3
      [Google Scholar]
    35. 35.
      HasegawaK,YamashitaI,NambaK.1998. Quasi- and nonequivalence in the structure of bacterial flagellar filament.Biophys. J.74:569–75
      [Google Scholar]
    36. 36.
      HintscheM,WaljorV,GroßmannR,KühnMJ,ThormannKM et al.2017. A polar bundle of flagella can drive bacterial swimming by pushing, pulling, or coiling around the cell body.Sci. Rep.7:16771
      [Google Scholar]
    37. 37.
      HotaniH.1982. Micro-video study of moving bacterial flagellar filaments: III. Cyclic transformation induced by mechanical force.J. Mol. Biol.156:791–806
      [Google Scholar]
    38. 38.
      HowittMR,LeeJY,LertsethtakarnP,VogelmannR,JoubertL-M et al.2011. ChePep controlsHelicobacter pylori infection of the gastric glands and chemotaxis in the epsilonproteobacteria.mBio2:e00098–11
      [Google Scholar]
    39. 39.
      IslamST,MignotT.2015. The mysterious nature of bacterial surface (gliding) motility: a focal adhesion-based mechanism inMyxococcus xanthus.Sem. Cell. Dev. Biol.46:143–54
      [Google Scholar]
    40. 40.
      JaroschR.1967. Studien zur Bewegungsmechanik der Bakterien und Spirochäten des Hochmoores.Österr. Bot. Z.114:255–306
      [Google Scholar]
    41. 41.
      JarrellKF,McBrideMJ.2008. The surprisingly diverse ways that prokaryotes move.Nat. Rev. Microbiol.6:466–76
      [Google Scholar]
    42. 42.
      JohnsonS,FurlongEJ,DemeJC,NordAL,CaesarJJE et al.2021. Molecular structure of the intact bacterial flagellar basal body.Nat. Microbiol.6:712–21
      [Google Scholar]
    43. 43.
      JonesCW,ArmitageJP.2015. Positioning of bacterial chemoreceptors.Trends Microbiol23:247–56
      [Google Scholar]
    44. 44.
      KarlinseyJE,TanakaS,BettenworthV,YamaguchiS,BoosW et al.2000. Completion of the hook-basal body complex of theSalmonella typhimurium flagellum is coupled to FlgM secretion and fliC transcription.Mol. Microbiol.37:1220–31
      [Google Scholar]
    45. 45.
      KearnsDB.2010. A field guide to bacterial swarming motility.Nat. Rev. Microbiol.8:634–44
      [Google Scholar]
    46. 46.
      KimM,BirdJC,ParysAJV,BreuerKS,PowersTR.2003. A macroscopic scale model of bacterial flagellar bundling.PNAS100:15481–85
      [Google Scholar]
    47. 47.
      KimSY,ThanhXTT,JeongK,KimSB,PanSO et al.2014. Contribution of six flagellin genes to the flagellum biogenesis ofVibrio vulnificus and in vivo invasion.Infect. Immun.82:29–42
      [Google Scholar]
    48. 48.
      KinositaY,KikuchiY,MikamiN,NakaneD,NishizakaT.2018. Unforeseen swimming and gliding mode of an insect gut symbiont,Burkholderia sp. RPE64, with wrapping of the flagella around its cell body.ISME J12:838–48
      [Google Scholar]
    49. 49.
      KinscherfTG,WillisDK.1999. Swarming byPseudomonas syringae B728a requiresgacS (lemA) andgacA but not the acyl-homoserine lactone biosynthetic geneahlI.J. Bacteriol.181:4133–36
      [Google Scholar]
    50. 50.
      KöhlerT,CurtyLK,BarjaF,van DeldenC,PechèreJC.2000. Swarming ofPseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili.J. Bacteriol.182:5990–96
      [Google Scholar]
    51. 51.
      KoyasuS,ShirakiharaY.1984.Caulobacter crescentus flagellar filament has a right-handed helical form.J. Mol. Biol.173:125–30
      [Google Scholar]
    52. 52.
      KriegNR.1976. Biology of the chemoheterotrophic spirilla.Bacteriol. Rev.40:55–115
      [Google Scholar]
    53. 53.
      KühnMJ,SchmidtFK,EckhardtB,ThormannKM.2017. Bacteria exploit a polymorphic instability of the flagellar filament to escape from traps.PNAS114:6340–45
      [Google Scholar]
    54. 54.
      KühnMJ,SchmidtFK,FarthingNE,RossmannFM,HelmB et al.2018. Spatial arrangement of several flagellins within bacterial flagella improves motility in different environments.Nat. Commun.9:5369
      [Google Scholar]
    55. 55.
      LambertC,EvansKJ,TillR,HobleyL,CapenessM et al.2006. Characterizing the flagellar filament and the role of motility in bacterial prey-penetration byBdellovibrio bacteriovorus.Mol. Microbiol.60:274–86
      [Google Scholar]
    56. 56.
      LaventieB-J,SangermaniM,EstermannF,ManfrediP,PlanesR et al.2019. A surface-induced asymmetric program promotes tissue colonization byPseudomonas aeruginosa.Cell Host Microbe25:140–52
      [Google Scholar]
    57. 57.
      LeifsonE,CosenzaBJ,MurchelanoR,CleverdonRC.1964. Motile marine bacteria. I. Techniques, ecology, and general characteristics.J. Bacteriol.87:652–66
      [Google Scholar]
    58. 58.
      LeifsonE,HughR1953. Variation in shape and arrangement of bacterial flagella.J. Bacteriol.65:263–71
      [Google Scholar]
    59. 59.
      LertsethtakarnP,OttemannKM,HendrixsonDR.2011. Motility and chemotaxis inCampylobacter andHelicobacter.Annu. Rev. Microbiol.65:389–410
      [Google Scholar]
    60. 60.
      LiuB,GulinoM,MorseM,TangJX,PowersTR,BreuerKS.2014. Helical motion of the cell body enhancesCaulobacter crescentus motility.PNAS111:11252–56
      [Google Scholar]
    61. 61.
      MacnabRM.1977. Bacterial flagella rotating in bundles: a study in helical geometry.PNAS74:221–25
      [Google Scholar]
    62. 62.
      MacnabRM,OrnstonMK.1977. Normal-to-curly flagellar transitions and their role in bacterial tumbling: stabilization of an alternative quaternary structure by mechanical force.J. Mol. Biol.112:1–30
      [Google Scholar]
    63. 63.
      MagariyamaY,MasudaS,TakanoY,OhtaniT,KudoS.2001. Difference between forward and backward swimming speeds of the single polar-flagellated bacterium,Vibrio alginolyticus.FEMS Microbiol. Lett.205:343–47
      [Google Scholar]
    64. 64.
      Maki-YonekuraS,YonekuraK,NambaK.2010. Conformational change of flagellin for polymorphic supercoiling of the flagellar filament.Nat. Struct. Mol. Biol.17:4417–22
      [Google Scholar]
    65. 65.
      MarshallB,WarrenJR.1984. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration.Lancet323:1311–15
      [Google Scholar]
    66. 66.
      MartínezLE,HardcastleJM,WangJ,PincusZ,TsangJ et al.2016.Helicobacter pylori strains vary cell shape and flagellum number to maintain robust motility in viscous environments.Mol. Microbiol.99:88–110
      [Google Scholar]
    67. 67.
      MatillaMA,RamosJL,DuqueE,de Dios AlchéJ,Espinosa-UrgelM,Ramos-GonzálezMI.2007. Temperature and pyoverdine-mediated iron acquisition control surface motility ofPseudomonas putida.Environ. Microbiol.9:1842–50
      [Google Scholar]
    68. 68.
      MaurielloEMF,JonesC,MoineA,ArmitageJP.2018. Cellular targeting and segregation of bacterial chemosensory systems.FEMS Microbiol. Rev.42:462–76
      [Google Scholar]
    69. 69.
      McBrideMJ,NakaneD.2015.Flavobacterium gliding motility and the type IX secretion system.Curr. Opin. Microbiol.28:72–77
      [Google Scholar]
    70. 70.
      McCarterL,SilvermanM.1990. Surface-induced swarmer cell differentiation ofVibrio parahaemolyticus.Mol. Microbiol.4:71057–62
      [Google Scholar]
    71. 71.
      McCarterLL.2001. Polar flagellar motility of the Vibrionaceae.Microbiol. Mol. Biol. Rev.65:445–62
      [Google Scholar]
    72. 72.
      McCarterLL.2004. Dual flagellar systems enable motility under different circumstances.J. Mol. Microbiol. Biotechnol.7:18–29
      [Google Scholar]
    73. 73.
      MerinoS,ShawJG,TomásJM.2006. Bacterial lateral flagella: an inducible flagella system.FEMS Microbiol. Lett.263:127–35
      [Google Scholar]
    74. 74.
      MetznerP.1920. Die Bewegung and Reizbeantwortung der bipolar begeißelten Spirillen.Naturwissenschaften8:957–58
      [Google Scholar]
    75. 75.
      MignotT,NöllmannM2017. New insights into the function of a versatile class of membrane molecular motors from studies ofMyxococcus xanthus surface (gliding) motility.Microb. Cell4:98–100
      [Google Scholar]
    76. 76.
      MukherjeeT,ElmasM,VoL,AlexiadesV,HongT,AlexandreG.2019. Multiple CheY homologs control swimming reversals and transient pauses inAzospirillum brasilense.Biophys. J.116:1527–37
      [Google Scholar]
    77. 77.
      MuraleedharanS,FreitasC,MannP,GlatterT,RinggaardS.2018. A cell length-dependent transition in MinD-dynamics promotes a switch in division-site placement and preservation of proliferating elongatedVibrio parahaemolyticus swarmer cells.Mol. Microbiol.109:3365–84
      [Google Scholar]
    78. 78.
      MuratD,HérisseM,EspinosaL,BossaA,AlbertoF,WuL-F2015. Opposite and coordinated rotation of amphitrichous flagella governs oriented swimming and reversals in a magnetotacticSpirillum.J. Bacteriol.197:3275–82
      [Google Scholar]
    79. 79.
      NakamuraS.2020. Spirochete flagella and motility.Biomolecules10:E550
      [Google Scholar]
    80. 80.
      NavaLG,GroßmannR,HintscheM,BetaC,PeruaniF.2020. A novel approach to chemotaxis: active particles guided by internal clocks.Europhys. Lett.130:68002
      [Google Scholar]
    81. 81.
      OhbayashiT,TakeshitaK,KitagawaW,NikohN,KogaR et al.2015. Insect's intestinal organ for symbiont sorting.PNAS112:5179–88
      [Google Scholar]
    82. 82.
      O'SheaTM,DeLoney-MarinoCR,ShibataS,AizawaS-I,WolfeAJ,VisickKL2005. Magnesium promotes flagellation ofVibrio fischeri.J. Bacteriol.187:2058–65
      [Google Scholar]
    83. 83.
      PadgettPJ,FriedmanMW,KriegNR.1983. Straight mutants ofSpirillum volutans can swim.J. Bacteriol.153:1543–44
      [Google Scholar]
    84. 84.
      ParkJ,KimY,LeeW,LimS.2022. Modeling of lophotrichous bacteria reveals key factors for swimming reorientation.Sci. Rep.12:6482
      [Google Scholar]
    85. 85.
      PingL,BirkenbeilJ,MonajembashiS.2013. Swimming behavior of the monotrichous bacteriumPseudomonas fluorescens SBW25.FEMS Microbiol. Ecol.86:36–44
      [Google Scholar]
    86. 86.
      PohlO,HintscheM,AlirezaeizanjaniZ,SeyrichM,BetaC,StarkH.2017. Inferring the chemotactic strategy ofP. putida andE. coli using modified Kramers-Moyal coefficients.PLOS Comput. Biol.13:e1005329
      [Google Scholar]
    87. 87.
      PurcellEM.2014. Life at low Reynolds number.Am. J. Phys.45:3
      [Google Scholar]
    88. 88.
      QianC,WongCC,SwarupS,ChiamK-H.2013. Bacterial tethering analysis reveals a “run-reverse-turn” mechanism forPseudomonas species motility.Appl. Environ. Microbiol.79:4734–43
      [Google Scholar]
    89. 89.
      RaatzM,HintscheM,BahrsM,ThevesM,BetaC.2015. Swimming patterns of a polarly flagellated bacterium in environments of increasing complexity.Eur. Phys. J. Spec. Top.224:1185–98
      [Google Scholar]
    90. 90.
      ReichertK.1909. Über die Sichtbarmachung der Geisseln und die Geisselbewegung der Bakterien.Z. Bakteriol. Parasitenkd. Infektionskr.51:14–94
      [Google Scholar]
    91. 91.
      SamateyFA,ImadaK,NagashimaS,VondervisztF,KumasakaT et al.2001. Structure of the bacterial flagellar protofilament and implications for a switch for supercoiling.Nature410:331–37
      [Google Scholar]
    92. 92.
      SchäfferC,MessnerP.2017. Emerging facets of prokaryotic glycosylation.FEMS Microbiol. Rev.41:49–91
      [Google Scholar]
    93. 93.
      SchneiderWR,DoetschRN.1974. Effect of viscosity on bacterial motility.J. Bacteriol.117:696–701
      [Google Scholar]
    94. 94.
      SchuhmacherJS,ThormannKM,BangeG.2015. How bacteria maintain location and number of flagella?.FEMS Microbiol. Rev.39:812–22
      [Google Scholar]
    95. 95.
      ShimadaT,SakazakiR,SuzukiK.1985. Peritrichous flagella in mesophilic strains ofAeromonas.Jpn. J. Med. Sci. Biol.38:141–45
      [Google Scholar]
    96. 96.
      ShinodaS,OkamotoK.1977. Formation and function ofVibrio parahaemolyticus lateral flagella.J. Bacteriol.129:1266–71
      [Google Scholar]
    97. 97.
      ShrivastavaA,BergHC.2015. Towards a model forFlavobacterium gliding.Curr. Opin. Microbiol.28:93–97
      [Google Scholar]
    98. 98.
      SilvermanM,SimonM.1974. Flagellar rotation and the mechanism of bacterial motility.Nature249:73–74
      [Google Scholar]
    99. 99.
      SonK,GuastoJS,StockerR.2013. Bacteria can exploit a flagellar buckling instability to change direction.Nat. Phys.9:494–98
      [Google Scholar]
    100. 100.
      SonK,MenolascinaF,StockerR.2016. Speed-dependent chemotactic precision in marine bacteria.PNAS113:8624–29
      [Google Scholar]
    101. 101.
      SowaY,BerryRM.2008. Bacterial flagellar motor.Q. Rev. Biophys.41:103–32
      [Google Scholar]
    102. 102.
      StockerR.2011. Reverse and flick: hybrid locomotion in bacteria.PNAS108:2635–36
      [Google Scholar]
    103. 103.
      StockerR.2012. Marine microbes see a sea of gradients.Science338:628–33
      [Google Scholar]
    104. 104.
      TakeshitaK,KikuchiY.2017.Riptortus pedestris andBurkholderia symbiont: an ideal model system for insect-microbe symbiotic associations.Res. Microbiol.168:175–87
      [Google Scholar]
    105. 105.
      TanJ,ZhangX,WangX,XuC,ChangS et al.2021. Structural basis of assembly and torque transmission of the bacterial flagellar motor.Cell184:2665–79
      [Google Scholar]
    106. 106.
      TauteKM,GudeS,TansSJ,ShimizuTS.2015. High-throughput 3D tracking of bacteria on a standard phase contrast microscope.Nat. Commun.6:8776
      [Google Scholar]
    107. 107.
      TaylorBL,KoshlandDE.1974. Reversal of flagellar rotation in monotrichous and peritrichous bacteria: generation of changes in direction.J. Bacteriol.119:640–42
      [Google Scholar]
    108. 108.
      ThevesM,TaktikosJ,ZaburdaevV,StarkH,BetaC.2013. A bacterial swimmer with two alternating speeds of propagation.Biophys. J.105:1915–24
      [Google Scholar]
    109. 109.
      ThevesM,TaktikosJ,ZaburdaevV,StarkH,BetaC.2015. Random walk patterns of a soil bacterium in open and confined environments.Europhys. Lett.109:28007
      [Google Scholar]
    110. 110.
      TianM,WuZ,ZhangR,YuanJ.2022. A new mode of swimming in singly flagellatedPseudomonas aeruginosa.PNAS119:14e2120508119
      [Google Scholar]
    111. 111.
      TsokosCG,LaubMT.2012. Polarity and cell fate asymmetry inCaulobacter crescentus.Curr. Opin. Microbiol.15:744–50
      [Google Scholar]
    112. 112.
      TurnerL,RyuWS,BergHC.2000. Real-time imaging of fluorescent flagellar filaments.J. Bacteriol.182:2793–801
      [Google Scholar]
    113. 113.
      van LeeuwenhoekA.1722.Arcana Naturae Detecta. Lugduni Batavorum: Apud Joh. Arnold Langerak
      [Google Scholar]
    114. 114.
      VisickKL,StabbEV,RubyEG.2021. A lasting symbiosis: howVibrio fischeri finds a squid partner and persists within its natural host.Nat. Rev. Microbiol.19:654–65
      [Google Scholar]
    115. 115.
      WadhwaN,BergHC.2022. Bacterial motility: machinery and mechanisms.Nat. Rev. Microbiol.20:3161–73
      [Google Scholar]
    116. 116.
      WangF,BurrageAM,PostelS,ClarkRE,OrlovaA et al.2017. A structural model of flagellar filament switching across multiple bacterial species.Nat. Commun.8:960
      [Google Scholar]
    117. 117.
      XieL,AltindalT,ChattopadhyayS,WuX-L.2011. Bacterial flagellum as a propeller and as a rudder for efficient chemotaxis.PNAS108:2246–51
      [Google Scholar]
    118. 118.
      XieL,LuC,WuX-L.2015. Marine bacterial chemoresponse to a stepwise chemoattractant stimulus.Biophys. J.108:766–74
      [Google Scholar]
    119. 119.
      YamashitaL,HasegawaK,SuzukiH,VondervisztF,Mimori-KiyosueY,NambaK.1998. Structure and switching of bacterial flagellar filaments studied by X-ray fiber diffraction.Nat. Struct. Mol. Biol.5:125–32
      [Google Scholar]
    120. 120.
      ZhulinIB,ArmitageJP.1993. Motility, chemokinesis, and methylation-independent chemotaxis inAzospirillum brasilense.J. Bacteriol.175:952–58
      [Google Scholar]

    FromKnowable Magazine:

    knowable magazine Teen Brain Bootcamp Special


    knowable magazine from Annual Reviews


    Bluesky share image


    Climate Resource Center, Article Collection from Annual Reviews


    Journal News

    This is a required field
    Please enter a valid email address
    Approval was a Success
    Invalid data
    An Error Occurred
    Approval was partially successful, following selected items could not be processed due to error
    Annual Reviews:
    http://instance.metastore.ingenta.com/content/journals/10.1146/annurev-micro-041122-101032
    10.1146/annurev-micro-041122-101032
    SEARCH_EXPAND_ITEM

    [8]ページ先頭

    ©2009-2025 Movatter.jp