Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature
  • Article
  • Published:

A Jurassic gliding euharamiyidan mammal with an ear of five auditory bones

Naturevolume 551pages451–456 (2017)Cite this article

Subjects

Abstract

Gliding is a distinctive locomotion type that has been identified in only three mammal species from the Mesozoic era. Here we describe another Jurassic glider that belongs to the euharamiyidan mammals and shows hair details on its gliding membrane that are highly similar to those of extant gliding mammals. This species possesses a five-boned auditory apparatus consisting of the stapes, incus, malleus, ectotympanic and surangular, representing, to our knowledge, the earliest known definitive mammalian middle ear. The surangular has not been previously identified in any mammalian middle ear, and the morphology of each auditory bone differs from those of known mammals and their kin. We conclude that gliding locomotion was probably common in euharamiyidans, which lends support to idea that there was a major adaptive radiation of mammals in the mid-Jurassic period. The acquisition of the auditory bones in euharamiyidans was related to the formation of the dentary-squamosal jaw joint, which allows a posterior chewing movement, and must have evolved independently from the middle ear structures of monotremes and therian mammals.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

9,800 Yen / 30 days

cancel any time

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Type specimens ofA. allinhopsoni.
Figure 2: Skull ofA. allinhopsoni (holotype; HG-M017-A).
Figure 3: Close-up views of impressions of fur and gliding membrane inA. allinhopsoni (paratype; HG-M018).
Figure 4: Phylogeny of mammaliaforms with focus on Allotheria.
Figure 5: Comparison of mammaliaform middle ears and jaw joints.

Similar content being viewed by others

References

  1. Zheng, X., Bi, S., Wang, X. & Meng, J. A new arboreal haramiyid shows the diversity of crown mammals in the Jurassic period.Nature500, 199–202 (2013)

    ADS CAS PubMed  Google Scholar 

  2. Bi, S., Wang, Y., Guan, J., Sheng, X. & Meng, J. Three new Jurassic euharamiyidan species reinforce early divergence of mammals.Nature514, 579–584 (2014)

    ADS CAS PubMed  Google Scholar 

  3. Meng, Q. J. et al. New gliding mammaliaforms from the Jurassic.Nature548, 291–296 (2017)

    ADS CAS PubMed  Google Scholar 

  4. Luo, Z. X. et al. New evidence for mammaliaform ear evolution and feeding adaptation in a Jurassic ecosystem.Nature548, 326–329 (2017)

    ADS CAS PubMed  Google Scholar 

  5. Fox, R. C. & Meng, J. An X-radiographic and SEM study of the osseous inner ear of multituberculates and monotremes (Mammalia): implications for mammalian phylogeny and evolution of hearing.Zool. J. Linn. Soc.121, 249–291 (1997)

    Google Scholar 

  6. Kielan-Jaworowska, Z ., Cifelli, R. L. & Luo, Z.-X.Mammals from the Age of Dinosaurs: Origins, Evolution, and Structure (Columbia Univ. Press, 2004)

  7. Meng, J., Bi, S., Zheng, X. & Wang, X. Ear ossicle morphology of the Jurassic euharamiyidanArboroharamiya and evolution of mammalian middle ear.J. Morphol.http://doi.org/10.1002/jmor.20565 (2016)

  8. Wible, J. R. Origin of Mammalia: the craniodental evidence reexamined.J. Vertebr. Paleontol.11, 1–28 (1991)

    Google Scholar 

  9. Doran, A. H. G. Morphology of the mammalian ossicular auditûs.Trans. Linn. Soc. Lond1, 371–497 (1878)

    Google Scholar 

  10. Fleischer, G. Studien am Skelett des Gehörorgans der Säugetiere, einschließlich des Menschen.Saugetierkdl. Mitt.21, 131–239 (1973)

    Google Scholar 

  11. Zeller, U. inMammal Phylogeny: Mesozoic Differentiation, Multituberculates, Monotremes, Early Therians, and Marsupials (eds Szalay, F. S., Novacek, M. J. & McKenna, M. J. ) 95–107 (Springer, 1993)

  12. Jackson, S . & Schouten, P.Gliding Mammals of the World (CSIRO, 2012)

  13. Johnson-Murray, J. L. The comparative myology of the gliding membranes ofAcrobates, Petauroides andPetaurus contrasted with the cutaneous myology ofHemibelideus andPseudocheirus (Marsupialia: Phalangeridae) and with selected gliding Rodentia (Sciuridae and Anamoluridae).Aust. J. Zool.35, 101–113 (1987)

    Google Scholar 

  14. Jackson, S. M. & Thorington, R. W. Jr. Gliding mammals: taxonomy of living and extinct species.Smithson. Contrib. Zool.638, 1–117 (2012)

    Google Scholar 

  15. Luo, Z.-X., Yuan, C.-X., Meng, Q.-J. & Ji, Q. A Jurassic eutherian mammal and divergence of marsupials and placentals.Nature476, 442–445 (2011)

    ADS CAS PubMed  Google Scholar 

  16. Meng, J., Wang, Y. & Li, C. Transitional mammalian middle ear from a new Cretaceous Jehol eutriconodont.Nature472, 181–185 (2011)

    ADS CAS PubMed  Google Scholar 

  17. Krause, D. W. et al. First cranial remains of a gondwanatherian mammal reveal remarkable mosaicism.Nature515, 512–517 (2014)

    ADS CAS PubMed  Google Scholar 

  18. Luo, Z.-X., Gatesy, S. M., Jenkins, F. A. Jr, Amaral, W. W. & Shubin, N. H. Mandibular and dental characteristics of Late Triassic mammaliaformHaramiyavia and their ramifications for basal mammal evolution.Proc. Natl Acad. Sci. USA112, E7101–E7109 (2015)

    CAS PubMed PubMed Central  Google Scholar 

  19. Hahn, G. Neue Zähne von Haramiyiden aus der deutschen Ober-Trias und ihre Beziehungen zu den Multituberculaten.Palaeontogr. Abt. A142, 1–15 (1973)

    Google Scholar 

  20. Jenkins, F. A., Jr, Gatesy, S. M., Shubin, N. H. & Amaral, W. W. Haramiyids and Triassic mammalian evolution.Nature385, 715–718 (1997)

    ADS CAS PubMed  Google Scholar 

  21. Allin, E. F. Evolution of the mammalian middle ear.J. Morphol.147, 403–437 (1975)

    CAS PubMed  Google Scholar 

  22. Allin, E. F. & Hopson, J. A. inThe Evolutionary Biology of Hearing (eds Webster, D. B., Popper, A. N. & Fay, R. R. ) 587–614 (Springer, 1992)

  23. Rich, T. H. et al. The mandible and dentition of the Early Cretaceous monotremeTeinolophos trusleri.Alcheringa40, 475–501 (2016)

    Google Scholar 

  24. Presley, R. Lizards, mammals and the primitive tetrapod tympanic membrane.Symp. Zool. Soc. Lond.52, 127–152 (1984)

    Google Scholar 

  25. Meng, J. & Wyss, A. R. Monotreme affinities and low-frequency hearing suggested by multituberculate ear.Nature377, 141–144 (1995)

    ADS CAS  Google Scholar 

  26. Hurum, J. H., Presley, R. & Kielan-Jaworowska, Z. The middle ear in multituberculate mammals.Acta Palaeontol. Pol.41, 253–275 (1996)

    Google Scholar 

  27. Rougier, G. W., Wible, J. R. & Novacek, M. J. Middle-ear ossicles of the multituberculateKryptobaatar from the Mongolian Late Cretaceous: implications for mammaliamorph relationships and the evolution of the auditory apparatus.Am. Mus. Novit.3187, 1–43 (1996)

    Google Scholar 

  28. Kemp, T. S. Acoustic transformer function of the postdentary bones and quadrate of a nonmammalian cynodont.J. Vertebr. Paleontol.27, 431–441 (2007)

    Google Scholar 

  29. Kermack, K. A., Mussett, F. & Rigney, H. W. The skull ofMorganucodon.Zool. J. Linn. Soc.71, 1–158 (1981)

    Google Scholar 

  30. Mallo, M. Formation of the middle ear: recent progress on the developmental and molecular mechanisms.Dev. Biol.231, 410–419 (2001)

    CAS PubMed  Google Scholar 

  31. Anthwal, N., Joshi, L. & Tucker, A. S. Evolution of the mammalian middle ear and jaw: adaptations and novel structures.J. Anat.222, 147–160 (2013)

    PubMed  Google Scholar 

  32. Gaupp, E. Die Reichertsche Theorie (Hammer-, Amboss- und Kieferfrage).Archiv. Anatomie. Entwick1912, 1–426 (1913)

    Google Scholar 

  33. Maier, W. & Ruf, I. Evolution of the mammalian middle ear: a historical review.J. Anat.228, 270–283 (2016)

    PubMed  Google Scholar 

  34. Reichert, C. Über die Visceralbogen der Wirbelthiere im Allgemeinen und deren Metamorphosen bei den Vögeln und Säugethieren.Arch. Anat. Phys. Med.1837, 120–220 (1837)

    Google Scholar 

  35. Kermack, K. A., Mussett, F. & Rigney, H. W. The lower jaw ofMorganucodon.Zool. J. Linn. Soc.53, 87–175 (1973)

    Google Scholar 

  36. Lillegraven, J. A. & Krusat, G. Cranio-mandibular anatomy ofHaldanodon exspectatus (Docodonta; Mammalia) from the Late Jurassic of Portugal and its implications to the evolution of mammalian characters.Contrib. Geol28, 39–138 (1991)

    Google Scholar 

  37. Crompton, A. W. inStudies in Vertebrate Evolution (eds Joysey, K. A . & Kemp, T. S. ) 231–251 (Oliver & Boyd, 1972)

  38. Crompton, A. W. & Jenkins, F. A. Jr inMesozoic Mammals: The First Two-thirds of Mammalian History (eds Lillegraven, J. A., Kielan-Jaworowska, Z. & Clemen, W. A. ) 59–73 (Univ. California Press, 1979)

  39. Henson, O. W. Jr. inThe Handbook of Sensory Physiology: the Auditory System VII (eds Keidel, W. D. & Neff, W. D. ) 39–110 (Springer, 1974)

  40. Tucker, A. S., Watson, R. P., Lettice, L. A., Yamada, G. & Hill, R. E. Bapx1 regulates patterning in the middle ear: altered regulatory role in the transition from the proximal jaw during vertebrate evolution.Development131, 1235–1245 (2004)

    CAS PubMed  Google Scholar 

  41. Crompton, A. W. & Hylander, W. L. inThe Ecology and Biology of Mammal-like Reptiles (eds Hotton, N. III, MacLean, P. D., Roth J. J. & Rot E. C. ) 263–282 (Smithsonian Inst. Press, 1986)

  42. Dial, R., Bloodworth, B., Lee, A., Boyne, P. & Heys, J. The distribution of free space and its relation to canopy composition at six forest sites.For. Sci.50, 312–325 (2004)

    Google Scholar 

  43. Heinicke, M. P., Greenbaum, E., Jackman, T. R. & Bauer, A. M. Evolution of gliding in Southeast Asian geckos and other vertebrates is temporally congruent with dipterocarp forest development.Biol. Lett.8, 994–997 (2012)

    PubMed PubMed Central  Google Scholar 

  44. Socha, J. J., Jafari, F., Munk, Y. & Byrnes, G. How animals glide: from trajectory to morphology.Can. J. Zool.93, 901–924 (2015)

    Google Scholar 

  45. Meng, J., Hu, Y., Wang, Y., Wang, X. & Li, C. A Mesozoic gliding mammal from northeastern China.Nature444, 889–893 (2006)

    ADS CAS PubMed  Google Scholar 

  46. Hayssen, V. Patterns of body and tail length and body mass in Sciuridae.J. Mamm.89, 852–873 (2008)

    Google Scholar 

  47. Dudley, R. et al. Gliding and the functional origins of flight: biomechanical novelty or necessity?Annu. Rev. Ecol. Evol. Syst.38, 179–201 (2007)

    Google Scholar 

  48. Endo, H., Yokokawa, K., Kurohmaru, M. & Hayashi, Y. Functional anatomy of gliding membrane muscles in the sugar glider (Petaurus breviceps).Ann. Anat.180, 93–96 (1998)

    CAS PubMed  Google Scholar 

  49. Luo, Z.-X. Transformation and diversification in early mammal evolution.Nature450, 1011–1019 (2007)

    ADS CAS PubMed  Google Scholar 

  50. Grossnickle, D. M . & Polly, P. D. Mammal disparity decreases during the Cretaceous angiosperm radiation.Proc. R. Soc. Lond. B280, 20132110 (2013)

    Google Scholar 

  51. Meng, J. Mesozoic mammals of China: implications for phylogeny and early evolution of mammals.Natl Sci. Rev.1, 521–542 (2014)

    Google Scholar 

  52. Close, R. A., Friedman, M., Lloyd, G. T. & Benson, R. B. Evidence for a mid-Jurassic adaptive radiation in mammals.Curr. Biol.25, 2137–2142 (2015)

    CAS PubMed  Google Scholar 

  53. Meng, J. & Hou, S.-L. Earliest known mammalian stapes from an early cretaceous eutriconodontan mammal and implications for evolution of mammalian middle ear.Palaeontol. Polonica67, 181–196 (2016)

    Google Scholar 

  54. Zhou, C.-F., Wu, S., Martin, T. & Luo, Z.-X. A Jurassic mammaliaform and the earliest mammalian evolutionary adaptations.Nature500, 163–167 (2013)

    ADS CAS PubMed  Google Scholar 

  55. Yuan, C.-X., Ji, Q., Meng, Q.-J., Tabrum, A. R. & Luo, Z.-X. Earliest evolution of multituberculate mammals revealed by a new Jurassic fossil.Science341, 779–783 (2013)

    ADS CAS PubMed  Google Scholar 

  56. Meng, J., Bi, S., Wang, Y., Zheng, X. & Wang, X. Dental and mandibular morphologies ofArboroharamiya (Haramiyida, Mammalia): a comparison with other haramiyidans andMegaconus and implications for mammalian evolution.PLoS One9, e113847 (2014)

    ADS PubMed PubMed Central  Google Scholar 

  57. Zhou, Z.-H., Jin, F. & Wang, Y. Vertebrate assemblages from the middle-late Jurassic Yanliao Biota in Northeast China.Earth Sci. Front17, 252–254 (2010)

    Google Scholar 

  58. Xu, X., Zhou, Z.-H., Sullivan, C., Wang, Y. & Ren, D. An updated review of the Middle-Late Jurassic Yanliao biota: chronology, taphonomy, paleontology and paleoecology.Acta Geol. Sin. (English Edition)90, 2229–2243 (2016)

    Google Scholar 

  59. Gaetano, L. C. & Rougier, G. W. New materials ofArgentoconodon fariasorum (Mammaliaformes, Triconodontidae) from the Jurassic of Argentina and its bearing on triconodont phylogeny.J. Vertebr. Paleontol.31, 829–843 (2011)

    Google Scholar 

  60. Gaetano, L. C. & Rougier, G. W. First amphilestid from South America: a molariform from the Jurassic Cañadón Asfalto Formation, Patagonia, Argentina.J. Mamm. Evol.19, 235–248 (2012)

    Google Scholar 

  61. Gurovich, Y. & Beck, R. The phylogenetic affinities of the enigmatic mammalian clade Gondwanatheria.J. Mamm. Evol.16, 25–49 (2009)

    Google Scholar 

  62. Rowe, T. Definition, diagnosis and origin of Mammalia.J. Vertebr. Paleontol.8, 241–264 (1988)

    Google Scholar 

  63. O’Leary, M. A. et al. The placental mammal ancestor and the post-K-Pg radiation of placentals.Science339, 662–667 (2013)

    ADS PubMed  Google Scholar 

  64. Butler, P. M. Review of the early allotherian mammals.Acta Palaeontol. Pol.45, 317–342 (2000)

    Google Scholar 

  65. Butler, P. M. & Hooker, J. J. New teeth of allotherian mammals from the English Bathonian, including the earliest multituberculates.Acta Palaeontol. Pol.50, 185–207 (2005)

    Google Scholar 

  66. Hahn, G. & Hahn, R. Evolutionary tendencies and systematic arrangement in the Haramiyida (Mammalia).Geol. Palaeontol40, 173–193 (2006)

    Google Scholar 

  67. Averianov, A. O. & Lopatin, A. V. Phylogeny of triconodonts and symmetrodonts and the origin of extant mammals.Dokl. Biol. Sci.436, 32–35 (2011)

    CAS PubMed  Google Scholar 

  68. Mao, F.-Y., Wang, Y.-Q., Bi, S.-D., Guan, J. & Meng, J. Tooth enamel microstructures of three Jurassic euharamiyidans and implications for tooth enamel evolution in allotherian mammals.J. Vertebr. Paleontol.37, e1279168 (2017)

    Google Scholar 

  69. Luo, Z.-X., Schultz, J. A. & Ekdale, E. G. inEvolution of the Vertebrate Ear (eds Clack, J. A., Fay, R. R. & Popper, A. N. ) 139–174 (Springer, 2016)

  70. Swofford, D. L. PAUP* - Phylogenetic analysis Using Parsimony (*and other methods).Version4 (4.0a152) (Sinauer Associates, 2002)

  71. Ronquist, F. & Huelsenbeck, J. P. MrBayes 3: Bayesian phylogenetic inference under mixed models.Bioinformatics19, 1572–1574 (2003)

    CAS PubMed  Google Scholar 

  72. Ronquist, F. et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space.Syst. Biol.61, 539–542 (2012)

    PubMed PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank S.-H. Xie for specimen preparation; P.-F. Yin and Y.-M. Hou for computed laminography scanning of the specimens; X.-T. Zheng, X.-L. Wang, H.-J. Li, Z.-J. Gao, X.-H. Ding, and D.-Y. Sun for access to comparative specimens; N. Wong for drawing the auditory bones and animal reconstruction; D. W. Krause and S. Hoffmann for sharing data and insights on incisor identification; D. Sigogneau-Russell and Z.-X. Luo for permissions to use their published figures; and Z.-X. Luo, Z.-H. Zhou, X. Xu, G. Rougier, J. A. Schultz, A. S. Tucker, and M. Takechi for discussions. This work was supported by the National Natural Science Foundation of China (41688103; 41404022) and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (XDB18000000).

Author information

Authors and Affiliations

  1. Paleontology Center, Bohai University, Jinzhou, 121013, Liaoning Province, China

    Gang Han

  2. Hainan Tropical Ocean University, Sanya, 572022, Hainan Province, China

    Gang Han

  3. Key Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, PO Box 643, Beijing, 100044, China

    Fangyuan Mao & Yuanqing Wang

  4. Department of Biology, Indiana University of Pennsylvania, Indiana, 15705, Pennsylvania, USA

    Shundong Bi

  5. Division of Paleontology, American Museum of Natural History, New York, 10024, New York, USA

    Jin Meng

Authors
  1. Gang Han

    You can also search for this author inPubMed Google Scholar

  2. Fangyuan Mao

    You can also search for this author inPubMed Google Scholar

  3. Shundong Bi

    You can also search for this author inPubMed Google Scholar

  4. Yuanqing Wang

    You can also search for this author inPubMed Google Scholar

  5. Jin Meng

    You can also search for this author inPubMed Google Scholar

Contributions

G.H. and J.M. conceived the study. G.H. acquired and curated the specimens and did the field investigation. F.M. conducted computed laminography, rendered the data, and did most of the phylogenetic analyses and figures. S.B., Y.W. and F.M. helped to build the character list. J.M. supervised preparation of the specimen and design of the figures and drafted the manuscript; all authors edited and approved the manuscript.

Corresponding authors

Correspondence toFangyuan Mao orJin Meng.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reviewer InformationNature thanks G. Rougier and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Figure 1 The type locality and fossil pit where the type specimens ofA. allinhopsoni were collected.

a, Distant view of the fossil locality and Tiaojishan Formation in the area of Nanshimen village, Gangou Town, Qinglong County, Hebei Province, China.b,c, The fossil pits where the type specimens were collected. The blue arrow in c points to the bed that generated the holotype and paratype. All photographs were taken by G.H. SeeSupplementary Information for more discussion on the age constraints of the beds and the fauna.

Extended Data Figure 2 The holotype specimen (HG-M017) ofA. allinhopsoni.

The specimen preserves most of the skull, dentition, vertebral column and impressions of the gliding membrane and fur (dark colour).a, The main part of the holotype (HG-M017-A), in which the skull and vertebral column are exposed in their dorsal views (see alsoFigs 2,3;Extended Data Fig. 4).b, The counterpart of the holotype (HG-M017-B), which preserves most of the limb structures and the molds of the vertebral column preserved in the main part. The limbs are exposed primarily in their ventral views (see alsoExtended Data Fig. 6). Red arrows point to ribs (1–13); white arrows mark the exposed edges of the gliding membrane.

Extended Data Figure 3 The paratype specimen (HG-M018) ofA. allinhopsoni.

a, The main part of the paratype (HG-M018-A), which shows the ventral view of the skeleton (mainly the thoracic and lumbar vertebra) and impressions of the gliding membrane and body fur.b, The counterpart of the paratype (HG-M018-B). Skeletal remains preserved in the counterpart (peeled off from the main part) are mainly in the dorsal view. The skull was broken during excavation and reconstructed afterward; this area is outlined with a white dashed line to caution against potential misunderstanding of the morphology. The shape of the gliding membrane and impressions of hair are well preserved in the paratype and the exposed edge is marked by white arrows (see alsoFig. 3;Extended Data Fig. 6a, b). The red arrows ina point to bony spurs2. The red arrows inb point to the ribs; 12 ribs can be recognized, but we assume there are a total of 13 ribs, as in the holotype specimen.c, Reconstruction of the animal in gliding motion.

Extended Data Figure 4 Dentition ofA. allinhopsoni (holotype, HG-M017).

a, Part of the skull with exposed teeth (HG-M017-A).b, Counterpart of the skull part ina.c, Part of the skull with teeth (HG-M017-A). This was prepared from the back side of the main slab.d, Computed laminography image that roughly corresponds to the area shown inc, revealing teeth within the maxilla and blocked by bones.e, Close-up view showing the occlusal relationship of M1 and m1. As inA. jenkinsi and other euharamiyidans1,2,3,4,56, the ‘double engaged’ occlusal pattern is clear: the distolabial main cusp A1 of M1 bites in the basin of m1, whereas the mesiolingual main cusp a1 of m1 occludes in the basin of M1.f, Computed laminography image showing the incisor germ within each jaw bone, located dorsal to the root of the enlarged incisor. a1l, Cusp a1 on left first lower molar; amf, anterior extremity of the masseteric fossa; b1l–b3l, Cusps b1, b2 and b3 on left first lower molar; dlp4, distal portion of left lower fourth premolar; lA1, A1 cusp of left first upper molar (it bites in the basin of m1); lA2, A2 cusp of left first upper molar (small cusp may exist between A1 and A2); ldI2, left second deciduous upper incisor; ldi, left deciduous lower incisor; ldii, left deciduous lower incisor impression; lig, left lower incisor tooth germ (successive incisor); lm1, left first lower molar; lM1, left first upper molar; lm2, left second lower molar; lM2, left second upper molar; lP3, left third upper premolar; lP4, left fourth upper premolar; mf, masseteric fossa; mlp4, mesial portion of left fourth lower premolar; plP4, partial left fourth upper premolar; rl2g, germ of right second upper incisor; rdI2, right second deciduous upper incisor; rdi, right deciduous lower incisor; rig, right lower incisor (successive) tooth germ; rldI2, root of second left upper deciduous incisor; rlM1, root of left first molar; rlP3, root of left their upper premolar; rm1, right first lower molar; rM1, right first upper molar; rm2, right second lower molar; rM2, right second upper molar; rP3, right third upper premolar; rp4, right fourth lower premolar; rP4, right fourth upper premolar; rrdi, root of right lower deciduous incisor; tldi, tip of left lower deciduous incisor.

Extended Data Figure 5 Auditory apparatus ofA. allinhopsoni (holotype, HG-M017).

a, Close-up view of the ear region (mostly left side) that corresponds to the boxed area inFig. 2.b, Computed laminography image of the ear region.c, Computed laminography image showing the extension of the anterior process of the surangular.d, Computed laminography image showing the extension of the anterior process of the malleus.e, Interpretive drawing of the auditory bones (ventral view) with the stapes and incus moved out and the surangular overlapping with the malleus.f, Interpretative drawing of the auditory bones (dorsal view) with interpreted articulation of the incus and the malleus. Because the malleus, surangular and ectotympanic were slightly displaced from their anatomical positions, the reconstruction may not reflect the precise bone relationship. apm, anterior process of the malleus (prearticular); asa, anterior process of the surangular; br, breakage in the anterior process of the surangular; fv, fenestra vestibuli; gf, glenoid fossa; hy, hyoid element; ic, incus; lp, lenticular process; ma, malleus; mm, manubrium of the malleus; mp, medial process of the malleus; oc, occipital condyle; pf, perilymphatic foramen; pic, stapedial process of the incus; pism, process for insertion of the stapedius muscle of the stapes; pm, promontorium; ppr, paroccipital process; ptp, posttympanic process of the squamosal; rtm, ridge for attachment of the anterior part of the tympanic membrane; sa, surangular; sf, stapedius fossa; spg, groove for the stapedial artery; st, stapes; tm, transverse part of the malleus; ty, ectotympanic; ty-d, lateral ectotympanic part presumably equivalent to the dorsal part of the angular; ty-r, ectotympanic part presumably equivalent to the reflected lamina.

Extended Data Figure 6 Limbs and gliding membrane ofA. allinhopsoni.

a,b, Close-up views showing the relationship of the limbs and the gliding membrane (paratype, HG-M018-A). Note that the forelimbs and hind limbs were flexed so that the gliding membrane is not preserved in its fully extended size.c,d, Close-up views showing the relationship of the limbs and the gliding membrane (holotype specimen, HG-M017). pl, plagiopatagium, the primary gliding membrane that extends between the forelimbs and hind limbs; pr, propatagium, the gliding membrane between the neck and forelimbs; ur, uropatagium, the gliding membrane between the hind legs and the tail.

Extended Data Figure 7 Manual and pedal structure and ternary diagrams showing the intrinsic ray III proportions.

a, The manus in ventral view.d, The pes in ventral view.a andb are from the holotype, HG-M017-B. As in other euharamiyidans1,2,3,4, the metapodials are short, whereas the phalanges are proportionally elongate.c,d, Ternary plots showing the relative lengths of the metapodial, proximal and intermediate phalanges for digit III of the manus and pes. The lengths of those elements are shown on their respective axes as a percentage of the combined length of the three segments. As in other euharamiyidans8,9,A. allinhopsoni has a similar intrinsic manual and pedal ray proportion, which is typical of arboreal species in which the phalanges are long relative to the metapodials. In addition to the extant taxa, fossils involved in the plotting are: Ara,A. allinhopsoni; Arj,A. jenkinsi. Eo,Eomaia scansoria; Je,Jeholodens jenkinsi; Ma,Maotherium sinensis; Sb,Sinobaatar lingyuanensis; Sd,Sinodelphys szalayi; Sh,Shenshou; Xl,X. linglong; Xs,Xianshou songae. The plotting data are derived from previous studies1,2.

Extended Data Figure 8 Results of phylogenetic analyses based on dataset I (Vintana A).

a, Strict consensus tree resulted from parsimony-based analysis using PAUP*: tree length, 2,637; consistency index (CI), 0.3250; homoplasy index (HI), 0.6750; retention index (RI), 0.7895; rescaled consistency index (RC), 0.2566.b, Result of Bayesian analysis (50% majority-rule consensus) obtained from five million MCMC generations with burn-in fraction of 0.25. Node support given as posterior probabilities. See Methods andSupplementary Information for more details. In extant mammals, gliding locomotion has evolved independently in marsupials, rodents, and dermopterans12,14, but they are not all illustratable.

Extended Data Table 1 Measurements (in mm) of the type specimens ofA. allinhopsoni

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data – see contents pages for details.

Rights and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, G., Mao, F., Bi, S.et al. A Jurassic gliding euharamiyidan mammal with an ear of five auditory bones.Nature551, 451–456 (2017). https://doi.org/10.1038/nature24483

Download citation

Access through your institution
Buy or subscribe

Editorial Summary

Ancient glider lends an ear bone or two

The haramiyids were a group of mammals living in the age of dinosaurs that seem to have had a penchant for gliding, rather like flying squirrels of today. Two newly described species of gliding haramiyids were presented recently and now Jin Meng and colleagues follow with another. The new species lived in China in the Jurassic period between 164 and 159 million years ago and shows many intriguing features in addition to its adaptations for gliding. Its middle ear, for example, represents an interesting way-station in the evolution of the mammalian middle ear, which today is made up of three ossicles (the stapes, malleus and incus). It appears that the surangular of the jaw and the ectotympanic of the skull joined the trio of bones to form a hitherto unseen five-ossicle system.

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp