- Opinion
- Published:
Ten reasons to exclude viruses from the tree of life
Nature Reviews Microbiologyvolume 7, pages306–311 (2009)Cite this article
12kAccesses
93Altmetric
Abstract
When viruses were discovered, they were accepted as missing links between the inert world and living organisms. However, this idea was soon abandoned as information about their molecular parasitic nature accumulated. Recently, the notion that viruses are living organisms that have had a role in the evolution of some essential features of cells has experienced a renaissance owing to the discovery of unusually large and complex viruses that possess typical cellular genes. Here, we contend that there is strong evidence against the notion that viruses are alive and represent ancient lineages of the tree of life.
This is a preview of subscription content,access via your institution
Access options
Subscription info for Japanese customers
We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.
Prices may be subject to local taxes which are calculated during checkout


Similar content being viewed by others
References
Muller, H. J. in4th International Congress of Plant Science 917–918 (ed. Duggar, B. M.) 917–918 (Bantha Publishing, Menasha, 1929)
Podolsky, S. The role of the virus in origin-of-life theorizing.J. Hist. Biol.29, 79–126 (1996).
Simon, C. E. (ed.)The Filterable Viruses (Reinhold, New York, 1928).
Haldane, J. B. S. The origin of life.Rationalist Ann. 3–10 (1929).
Beutner, R.Life's Beginning on the Earth (Williams and Wilkins, Baltimore, 1938).
Oparin, A. I.Life: its Nature, Origin and Development (Academic Press, New York, 1961).
Avery, O. T., MacLeod, C. M. & McCarty, M. Studies on the chemical nature of the substance inducing transformation of pneumococcal types: induction of transformation by a desoxyribonucleic acid fraction isolated fromPneumococcus type III.J. Exper. Med.79, 137–158 (1944).
van Regenmortel, M. H. V. in7th Report of the International Committee on Taxonomy of Viruses (eds van Regenmortel, M. H. V. et al.) 3–16 (Academic Press, San Diego, 2000).
van Regenmortel, M. H. V. inEncyclopedia of Virology (eds Mahy, B. W. J. & van Regenmortel, M. H. V.) 398–402 (Elsevier/Academic Press, 2008).
Bamford, D. H., Grimes, J. M. & Stuart, D. I. What does structure tell us about virus evolution?Curr. Opin. Struct. Biol.15, 655–663 (2005).
Forterre, P. Three RNA cells for ribosomal lineages and three DNA viruses to replicate their genomes: a hypothesis for the origin of cellular domain.Proc. Natl Acad. Sci. USA103, 3669–3674 (2006).
La Scola, B. et al. A giant virus in amoebae.Science299, 2033 (2003).
Raoult, D. et al. The 1.2-megabase genome sequence of Mimivirus.Science306, 1344–1350 (2004).
Luisi, P. L. About various definitions of life.Orig. Life Evol. Biosph.28, 613–622 (1998).
Alexander, J. & Bridges, C. B. inColloid Chemistry, Theoretical and Applied (ed. Alexander, J.) 54 (Reinhold, New York, 1928).
Guerrero, R., Piqueras, M. & Berlanga, M. Microbial mats and the search for minimal ecosystems.Int. Microbiol5, 177–188 (2002).
Fitch, W. M. Homology a personal view on some of the problems.Trends Genet.16, 227–231 (2000).
Koonin, E. V., Senkevich, T. G. & Dolja, V. V. The ancient virus world and evolution of cells.Biol. Direct.1, 29 (2006).
Doolittle, W. F. The nature of the universal ancestor and the evolution of the proteome.Curr. Opin. Struct. Biol.10, 355–358 (2000).
Ranea, J. A., Sillero, A., Thornton, J. M. & Orengo, C. A. Protein superfamily evolution and the last universal common ancestor (LUCA).J. Mol. Evol.63, 513–525 (2006).
Raoult, D. & Forterre, P. Redefining viruses: lessons from Mimivirus.Nature Rev. Microbiol.6, 315–319 (2008).
Benson, S. D., Bamford, J. K., Bamford, D. H. & Burnett, R. M. Does common architecture reveal a viral lineage spanning all three domains of life?Mol. Cell16, 673–685 (2004).
Rice, G. et al. The structure of a thermophilic archaeal virus shows a double-stranded DNA viral capsid type that spans all domains of life.Proc. Natl Acad. Sci. USA101, 7716–7720 (2004).
Terada, T. et al. Functional convergence of two lysyl-tRNA synthetases with unrelated topologies.Nature Struct. Biol.9, 257–262 (2002).
Gherardini, P. F., Wass, M. N., Helmer-Citterich, M. & Sternberg, M. J. Convergent evolution of enzyme active sites is not a rare phenomenon.J. Mol. Biol.372, 817–845 (2007).
Wales, D. J. The energy landscape as a unifying theme in molecular science.Philos. Transact A Math. Phys. Eng. Sci.363, 357–375 (2005).
Olson, A. J., Hu, Y. H. & Keinan, E. Chemical mimicry of viral capsid self-assembly.Proc. Natl Acad. Sci. USA104, 20731–20736 (2007).
Barocchi, M. A., Masignani, V. & Rappuoli, R. Cell entry machines: a common theme in nature?Nature Rev. Microbiol.3, 349–358 (2005).
Yeates, T. O., Kerfeld, C. A., Heinhorst, S., Cannon, G. C. & Shively, J. M. Protein-based organelles in bacteria: carboxysomes and related microcompartments.Nature Reviews Microbiology6, 681–691 (2008).
Koonin, E. V. & Dolja, V. V. Evolution of complexity in the viral world: the dawn of a new vision.Virus Res.117, 1–4 (2006).
Koonin, E. V., Makarova, K. S. & Aravind, L. Horizontal gene transfer in prokaryotes: quantification and classification.Annu. Rev. Microbiol.55, 709–742 (2001).
Moreira, D. & Brochier-Armanet, C. Giant viruses, giant chimeras: the multiple evolutionary histories of Mimivirus genes.BMC Evol. Biol.8, 12 (2008).
Gray, M. W. & Doolittle, W. F. Has the endosymbiont hypothesis been proven?Microbiol. Rev.46, 1–42 (1982).
Woolhouse, M. E., Taylor, L. H. & Haydon, D. T. Population biology of multihost pathogens.Science292, 1109–1112 (2001).
Coats, D. W. Parasitic life styles of marine dinoflagellates.J. Euk. Microbiol.46, 402–409 (2007).
Woolhouse, M. E., Haydon, D. T. & Antia, R. Emerging pathogens: the epidemiology and evolution of species jumps.Trends Ecol. Evol.20, 238–244 (2005).
Ball, A. & Johnson, K. L. inThe Insect Viruses (eds. Miller, L. K. & Ball, L. A.) 225–267 (Plenum Publishing, New York, 1998).
Selling, B. H., Allison, R. F. & Kaesberg, P. Genomic RNA of an insect virus directs synthesis of infectious virions in plants.Proc. Natl Acad. Sci. USA87, 434–438 (1990).
Price, B. D., Rueckert, R. R. & Ahlquist, P. Complete replication of an animal virus and maintenance of expression vectors derived from it inSaccharomyces cerevisiae.Proc. Natl Acad. Sci. USA93, 9465–9470 (1996).
Prangishvili, D., Forterre, P. & Garrett, R. A. Viruses of the Archaea: a unifying view.Nature Rev. Microbiol.4, 837–848 (2006).
Cavalier-Smith, T. Membrane heredity and early chloroplast evolution.Trends Plant Sci.5, 174–182 (2000).
Miller, S. & Krijnse-Locker, J. Modification of intracellular membrane structures for virus replication.Nature Rev. Microbiol.6, 363–374 (2008).
Peretó, J., López-García, P. & Moreira, D. Ancestral lipid biosynthesis and early membrane evolution.Trends Biochem. Sci.29, 469–477 (2004).
Dinsdale, E. A. et al. Functional metagenomic profiling of nine biomes.Nature452, 629–632 (2008).
Mann, N. H., Cook, A., Millard, A., Bailey, S. & Clokie, M. Marine ecosystems: bacterial photosynthesis genes in a virus.Nature424, 741 (2003).
McClure, M. A. Evolution of the DUT gene: horizontal transfer between host and pathogen in all three domains of Life.Curr. Protein Pept. Sci.2, 313–324 (2001).
Bratke, K. A. & McLysaght, A. Identification of multiple independent horizontal gene transfers into poxviruses using a comparative genomics approach.BMC Evol. Biol.8, 67 (2008).
Moreira, D. & López-García, P. Comment on “The 1.2-megabase genome sequence of Mimivirus”.Science308, 1114 (2005).
Shutt, T. E. & Gray, M. W. Bacteriophage origins of mitochondrial replication and transcription proteins.Trends Genet.22, 90–95 (2006).
Moreira, D. Multiple independent horizontal transfers of informational genes from bacteria to plasmids and phages: implications for the origin of bacterial replication machinery.Mol. Microbiol.35, 1–5 (2000).
Drake, J. W., Charlesworth, B., Charlesworth, D. & Crow, J. F. Rates of spontaneous mutation.Genetics148, 1667–1686 (1998).
Awadalla, P. The evolutionary genomics of pathogen recombination.Nature Rev. Genet.4, 50–60 (2003).
Forterre, P. The origin of viruses and their possible roles in major evolutionary transitions.Virus Res.117, 5–16 (2006).
Yin, Y. & Fischer, D. On the origin of microbial ORFans: quantifying the strength of the evidence for viral lateral transfer.BMC Evol. Biol.6, 63 (2006).
Suttle, C. A. Marine viruses—major players in the global ecosystem.Nature Rev. Microbiol.5, 801–812 (2007).
Zhaxybayeva, O. & Gogarten, J. P. Cladogenesis, coalescence and the evolution of the three domains of life.Trends Genet.20, 182–187 (2004).
Lwoff, A. L'évolution physiologique.Etude des Pertes de Fonctions Chez les Microorganismes (Hermann et Cie, Paris, 1943).
Iyer, L. M., Balaji, S., Koonin, E. V. & Aravind, L. Evolutionary genomics of nucleo-cytoplasmic large DNA viruses.Virus Res.20, 20 (2006).
Diener, T. O. Circular RNAs: relics of precellular evolution?Proc. Natl Acad. Sci. USA86, 9370–9374 (1989).
Claverie, J. M. Viruses take center stage in cellular evolution.Gen. Biol.7, 110 (2006).
Novoa, R. R. et al. Virus factories: associations of cell organelles for viral replication and morphogenesis.Biol. Cell97, 147–172 (2005).
Futse, J. E., Brayton, K. A., Dark, M. J., Knowles, D. P. Jr & Palmer, G. H. Superinfection as a driver of genomic diversification in antigenically variant pathogens.Proc. Natl Acad. Sci. USA105, 2123–2127 (2008).
Aristotle, D.a.De anima (350 BC) (ed. Hick, R. D.) (George Olms Verlag, Hildesheim, 1990).
Engels, F.Herrn Eugen Dühring's Umwälzung der Wissenschaft (Dietz Verlag, Stuttgart, 1894).
Schrödinger, E.What is Life? (Cambridge University Press, Cambridge, 1944).
Von Neumann, J. inLectures on the Theory and Organisation of Complicated Automata (ed. Burks, A. W.) (University of Illinois Press, Urbana 1949).
de Duve, C.Blueprint for a Cell (Patterson, Burlington 1991).
Prigogine, I.Introduction to Thermodynamics of Irreversible Processes (Wiley, New York, 1961).
Bernal, J. D. inTheoretical and Mathematical Biology (eds. Waterman, T. & Morowitz, H. J.) 96–135 (Blaisdell, New York, 1965).
Gánti, T.The Principles of Life (Oxford University Press, Oxford, 2003).
Varela, F. G., Maturana, H. R. & Uribe, R. Autopoiesis: the organization of living systems, its characterization and a model.Curr. Mod. Biol.5, 187–196 (1974).
Maynard Smith, J.The Problems of Biology (Oxford University Press, Oxford, 1986).
Joyce, G. F. inOrigins of Life: the Central Concepts (eds Deamer, D. W. & Fleischaker, G. R.) xi–xii (Jones & Bartlett, Boston, 1994).
Ruiz-Mirazo, K., Pereto, J. & Moreno, A. A universal definition of life: autonomy and open-ended evolution.Orig. Life Evol. Biosph.34, 323–346 (2004).
Acknowledgements
The authors thank three anonymous referees for helpful comments and criticisms, T.O. Yeates and S.W. Wilhelm for permission to use the photographs shown inFigure 1, and the French Agence Nationale de la Recherche (ANR JC05_44,674) and the CNRS for financial support.
Author information
Authors and Affiliations
David Moreira and Purificación López-García are at the Unité d'Ecologie, Systématique et Evolution, UMR CNRS 8,079, Université Paris-Sud, bâtiment 360, 91405 Orsay Cedex, France.,
David Moreira & Purificación López-García
- David Moreira
You can also search for this author inPubMed Google Scholar
- Purificación López-García
You can also search for this author inPubMed Google Scholar
Corresponding author
Correspondence toDavid Moreira.
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Related links
Rights and permissions
About this article
Cite this article
Moreira, D., López-García, P. Ten reasons to exclude viruses from the tree of life.Nat Rev Microbiol7, 306–311 (2009). https://doi.org/10.1038/nrmicro2108
Published:
Issue Date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative