Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Reviews Immunology
  • Review Article
  • Published:

The regulation of IL-10 production by immune cells

Nature Reviews Immunologyvolume 10pages170–181 (2010)Cite this article

Subjects

Key Points

  • Interleukin-10 (IL-10) is not a cell type-specific cytokine, but instead it is broadly expressed by many immune cells.

  • Several layers of regulation regulate IL-10 production, including changes in the chromatin structure, enhancement or silencing ofIL10 transcription and post-transcriptional regulatory mechanisms.

  • Many of the molecular events leading toIL10 expression are similar and common to various IL-10-producing immune cells, but cell type-specific signals also exist.

  • Induction of IL-10 often occurs together with pro-inflammatory cytokines, although pathways that induce IL-10 may actually negatively regulate these pro-inflammatory cytokines.

  • Understanding the specific molecular events that regulate the expression of IL-10 will be important for the design of new strategies of immune intervention.

Abstract

Interleukin-10 (IL-10), a cytokine with anti-inflammatory properties, has a central role in infection by limiting the immune response to pathogens and thereby preventing damage to the host. Recently, an increasing interest in howIL10 expression is regulated in different immune cells has revealed some of the molecular mechanisms involved at the levels of signal transduction, epigenetics, transcription factor binding and gene activation. Understanding the specific molecular events that regulate the production of IL-10 will help to answer the remaining questions that are important for the design of new strategies of immune intervention.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Interleukin-10 expression in the immune system.
Figure 2: Signals that induce interleukin-10 expression by cells of the innate immune response.
Figure 3: Molecular regulation of interleukin-10 expression: the interleukin-10 locus and promoter.
Figure 4: Transcription factors that control interleukin-10 expression by CD4+ T cells and antigen-presenting cells.

Similar content being viewed by others

References

  1. Hawrylowicz, C. M. & O'Garra, A. Potential role of interleukin-10-secreting regulatory T cells in allergy and asthma.Nature Rev. Immunol.5, 271–283 (2005).

    Article CAS  Google Scholar 

  2. O'Garra, A., Barrat, F. J., Castro, A. G., Vicari, A. & Hawrylowicz, C. Strategies for use of IL-10 or its antagonists in human disease.Immunol. Rev.223, 114–131 (2008).This review covers the most recent advances in the use of IL-10 in human disease, from immune-mediated diseases to cancer.

    Article CAS PubMed  Google Scholar 

  3. Moore, K. W., de Waal Malefyt, R., Coffman, R. L. & O'Garra, A. Interleukin-10 and the interleukin-10 receptor.Annu. Rev. Immunol.19, 683–765 (2001).

    Article CAS PubMed  Google Scholar 

  4. Kuhn, R., Lohler, J., Rennick, D., Rajewsky, K. & Muller, W. Interleukin-10-deficient mice develop chronic enterocolitis.Cell75, 263–274 (1993).This is the first report showing the important role of IL-10 in regulating the immune response and it suggests that the absence of IL-10 is associated with gut inflammation.

    Article CAS PubMed  Google Scholar 

  5. Sellon, R. K. et al. Resident enteric bacteria are necessary for development of spontaneous colitis and immune system activation in interleukin-10-deficient mice.Infect. Immun.66, 5224–5231 (1998).

    CAS PubMed PubMed Central  Google Scholar 

  6. Ejrnaes, M. et al. Resolution of a chronic viral infection after interleukin-10 receptor blockade.J. Exp. Med.203, 2461–2472 (2006).

    Article CAS PubMed PubMed Central  Google Scholar 

  7. Brooks, D. G. et al. Interleukin-10 determines viral clearance or persistencein vivo.Nature Med.12, 1301–1309 (2006).

    Article CAS PubMed  Google Scholar 

  8. Gazzinelli, R. T. et al. In the absence of endogenous IL-10, mice acutely infected withToxoplasma gondii succumb to a lethal immune response dependent on CD4+ T cells and accompanied by overproduction of IL-12, IFN-γ and TNF-α.J. Immunol.157, 798–805 (1996).

    CAS PubMed  Google Scholar 

  9. Li, C., Corraliza, I. & Langhorne, J. A defect in interleukin-10 leads to enhanced malarial disease inPlasmodium chabaudi chabaudi infection in mice.Infect. Immun.67, 4435–4442 (1999).

    CAS PubMed PubMed Central  Google Scholar 

  10. O'Garra, A. & Vieira, P. TH1 cells control themselves by producing interleukin-10.Nature Rev. Immunol.7, 425–428 (2007).

    Article CAS  Google Scholar 

  11. Trinchieri, G. Interleukin-10 production by effector T cells: Th1 cells show self control.J. Exp. Med.204, 239–243 (2007).

    Article CAS PubMed PubMed Central  Google Scholar 

  12. Fiorentino, D. F., Bond, M. W. & Mosmann, T. R. Two types of mouse T helper cell. IV. Th2 clones secrete a factor that inhibits cytokine production by Th1 clones.J. Exp. Med.170, 2081–2095 (1989).

    Article CAS PubMed  Google Scholar 

  13. O'Garra, A. & Vieira, P. Regulatory T cells and mechanisms of immune system control.Nature Med.10, 801–805 (2004).

    Article CAS PubMed  Google Scholar 

  14. Roncarolo, M. G. et al. Interleukin-10-secreting type 1 regulatory T cells in rodents and humans.Immunol. Rev.212, 28–50 (2006).

    Article CAS PubMed  Google Scholar 

  15. Maynard, C. L. & Weaver, C. T. Diversity in the contribution of interleukin-10 to T-cell-mediated immune regulation.Immunol. Rev.226, 219–233 (2008).

    Article CAS PubMed PubMed Central  Google Scholar 

  16. Maloy, K. J. & Powrie, F. Regulatory T cells in the control of immune pathology.Nature Immunol.2, 816–822 (2001).

    Article CAS  Google Scholar 

  17. Hoffmann, K. F., Cheever, A. W. & Wynn, T. A. IL-10 and the dangers of immune polarization: excessive type 1 and type 2 cytokine responses induce distinct forms of lethal immunopathology in murine schistosomiasis.J. Immunol.164, 6406–6416 (2000).

    Article CAS PubMed  Google Scholar 

  18. Grunig, G. et al. Interleukin-10 is a natural suppressor of cytokine production and inflammation in a murine model of allergic bronchopulmonary aspergillosis.J. Exp. Med.185, 1089–1099 (1997).

    Article CAS PubMed PubMed Central  Google Scholar 

  19. Zuany-Amorim, C. et al. Interleukin-10 inhibits antigen-induced cellular recruitment into the airways of sensitized mice.J. Clin. Invest.95, 2644–2651 (1995).

    Article CAS PubMed PubMed Central  Google Scholar 

  20. Murray, P. J. Understanding and exploiting the endogenous interleukin-10/STAT3-mediated anti-inflammatory response.Curr. Opin. Pharmacol.6, 379–386 (2006).

    Article CAS PubMed  Google Scholar 

  21. Barrat, F. J. et al.In vitro generation of interleukin 10-producing regulatory CD4+ T cells is induced by immunosuppressive drugs and inhibited by T helper type 1 (Th1)- and Th2-inducing cytokines.J. Exp. Med.195, 603–616 (2002).

    Article CAS PubMed PubMed Central  Google Scholar 

  22. Medzhitov, R. Recognition of microorganisms and activation of the immune response.Nature449, 819–826 (2007).

    Article CAS PubMed  Google Scholar 

  23. Fiorentino, D. F., Zlotnik, A., Mosmann, T. R., Howard, M. & O'Garra, A. IL-10 inhibits cytokine production by activated macrophages.J. Immunol.147, 3815–3822 (1991).This study shows for the first time that IL-10 can block an immune response by suppressing cytokine production by mouse macrophages, suggesting that these cells are targets for IL-10 function.

    CAS PubMed  Google Scholar 

  24. de Waal Malefyt, R., Abrams, J., Bennett, B., Figdor, C. G. & de Vries, J. E. Interleukin 10 (IL-10) inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL-10 produced by monocytes.J. Exp. Med.174, 1209–1220 (1991).This study shows for the first time that IL-10 can block an immune response by suppressing cytokine production by human monocytes, thereby positioning these cells as targets for IL-10 function.

    Article CAS PubMed  Google Scholar 

  25. Gerber, J. S. & Mosser, D. M. Reversing lipopolysaccharide toxicity by ligating the macrophage Fcγ receptors.J. Immunol.166, 6861–6868 (2001).

    Article CAS PubMed  Google Scholar 

  26. Boonstra, A. et al. Macrophages and myeloid dendritic cells, but not plasmacytoid dendritic cells, produce IL-10 in response to MyD88- and TRIF-dependent TLR signals, and TLR-independent signals.J. Immunol.177, 7551–7558 (2006).

    Article CAS PubMed  Google Scholar 

  27. Chang, E. Y., Guo, B., Doyle, S. E. & Cheng, G. Cutting edge: involvement of the type I IFN production and signaling pathway in lipopolysaccharide-induced IL-10 production.J. Immunol.178, 6705–6709 (2007).

    Article CAS PubMed  Google Scholar 

  28. Edwards, A. D. et al. Microbial recognition via Toll-like receptor-dependent and -independent pathways determines the cytokine response of murine dendritic cell subsets to CD40 triggering.J. Immunol.169, 3652–3660 (2002).

    Article CAS PubMed  Google Scholar 

  29. Agrawal, S. et al. Cutting edge: different Toll-like receptor agonists instruct dendritic cells to induce distinct Th responses via differential modulation of extracellular signal-regulated kinase-mitogen-activated protein kinase and c-Fos.J. Immunol.171, 4984–4989 (2003).

    Article CAS PubMed  Google Scholar 

  30. Dillon, S. et al. A Toll-like receptor 2 ligand stimulates Th2 responsesin vivo, via induction of extracellular signal-regulated kinase mitogen-activated protein kinase and c-Fos in dendritic cells.J. Immunol.172, 4733–4743 (2004).

    Article CAS PubMed  Google Scholar 

  31. McGuirk, P., McCann, C. & Mills, K. H. Pathogen-specific T regulatory 1 cells induced in the respiratory tract by a bacterial molecule that stimulates interleukin 10 production by dendritic cells: a novel strategy for evasion of protective T helper type 1 responses byBordetella pertussis.J. Exp. Med.195, 221–231 (2002).

    Article CAS PubMed PubMed Central  Google Scholar 

  32. Rogers, N. C. et al. Syk-dependent cytokine induction by Dectin-1 reveals a novel pattern recognition pathway for C type lectins.Immunity22, 507–517 (2005).

    Article CAS PubMed  Google Scholar 

  33. Geijtenbeek, T. B. et al. Mycobacteria target DC-SIGN to suppress dendritic cell function.J. Exp. Med.197, 7–17 (2003).

    Article CAS PubMed PubMed Central  Google Scholar 

  34. Akbari, O., DeKruyff, R. H. & Umetsu, D. T. Pulmonary dendritic cells producing IL-10 mediate tolerance induced by respiratory exposure to antigen.Nature Immunol.2, 725–731 (2001).

    Article CAS  Google Scholar 

  35. Siewe, L. et al. Interleukin-10 derived from macrophages and/or neutrophils regulates the inflammatory response to LPS but not the response to CpG DNA.Eur. J. Immunol.36, 3248–3255 (2006).

    Article CAS PubMed  Google Scholar 

  36. Zhang, X., Majlessi, L., Deriaud, E., Leclerc, C. & Lo-Man, R. Coactivation of Syk kinase and MyD88 adaptor protein pathways by bacteria promotes regulatory properties of neutrophils.Immunity31, 761–771 (2009).

    Article CAS PubMed  Google Scholar 

  37. Netea, M. G. et al. Toll-like receptor 2 suppresses immunity againstCandida albicans through induction of IL-10 and regulatory T cells.J. Immunol.172, 3712–3718 (2004).

    Article CAS PubMed  Google Scholar 

  38. Hu, X. et al. IFN-γ suppresses IL-10 production and synergizes with TLR2 by regulating GSK3 and CREB/AP-1 proteins.Immunity24, 563–574 (2006).This study provides the first molecular basis for the negative feedback loops that regulate IL-10 expression.

    Article CAS PubMed  Google Scholar 

  39. Jang, S., Uematsu, S., Akira, S. & Salgame, P. IL-6 and IL-10 induction from dendritic cells in response toMycobacterium tuberculosis is predominantly dependent on TLR2-mediated recognition.J. Immunol.173, 3392–3397 (2004).

    Article CAS PubMed  Google Scholar 

  40. Sing, A. et al. Yersinia V-antigen exploits Toll-like receptor 2 and CD14 for interleukin 10-mediated immunosuppression.J. Exp. Med.196, 1017–1024 (2002).

    Article CAS PubMed PubMed Central  Google Scholar 

  41. Moreira, L. O. et al. The TLR2–MyD88–NOD2–RIPK2 signalling axis regulates a balanced pro-inflammatory and IL-10-mediated anti-inflammatory cytokine response to Gram-positive cell walls.Cell. Microbiol.10, 2067–2077 (2008).

    Article CAS PubMed PubMed Central  Google Scholar 

  42. Hacker, H. et al. Specificity in Toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6.Nature439, 204–207 (2006).

    Article PubMed CAS  Google Scholar 

  43. Akira, S. & Takeda, K. Toll-like receptor signalling.Nature Rev. Immunol.4, 499–511 (2004).

    Article CAS  Google Scholar 

  44. Symons, A., Beinke, S. & Ley, S. C. MAP kinase kinase kinases and innate immunity.Trends Immunol.27, 40–48 (2006).

    Article CAS PubMed  Google Scholar 

  45. Yi, A. K. et al. Role of mitogen-activated protein kinases in CpG DNA-mediated IL-10 and IL-12 production: central role of extracellular signal-regulated kinase in the negative feedback loop of the CpG DNA-mediated Th1 response.J. Immunol.168, 4711–4720 (2002).

    Article CAS PubMed  Google Scholar 

  46. Agrawal, A., Dillon, S., Denning, T. L. & Pulendran, B. ERK1−/− mice exhibit Th1 cell polarization and increased susceptibility to experimental autoimmune encephalomyelitis.J. Immunol.176, 5788–5796 (2006).

    Article CAS PubMed  Google Scholar 

  47. Kaiser, F. et al. TPL-2 negatively regulates interferon-β production in macrophages and myeloid dendritic cells.J. Exp. Med.206, 1863–1871 (2009).

    Article CAS PubMed PubMed Central  Google Scholar 

  48. Beinke, S. & Ley, S. C. Functions of NF-κB1 and NF-κB2 in immune cell biology.Biochem. J.382, 393–409 (2004).

    Article CAS PubMed PubMed Central  Google Scholar 

  49. Banerjee, A., Gugasyan, R., McMahon, M. & Gerondakis, S. Diverse Toll-like receptors utilize Tpl2 to activate extracellular signal-regulated kinase (ERK) in hemopoietic cells.Proc. Natl Acad. Sci. USA103, 3274–3279 (2006).

    Article CAS PubMed PubMed Central  Google Scholar 

  50. Kanters, E. et al. Inhibition of NF-κB activation in macrophages increases atherosclerosis in LDL receptor-deficient mice.J. Clin. Invest.112, 1176–1185 (2003).

    Article CAS PubMed PubMed Central  Google Scholar 

  51. Saraiva, M. et al. Identification of a macrophage-specific chromatin signature in the IL-10 locus.J. Immunol.175, 1041–1046 (2005).

    Article CAS PubMed  Google Scholar 

  52. Gringhuis, S. I. et al. C-type lectin DC-SIGN modulates Toll-like receptor signaling via Raf-1 kinase-dependent acetylation of transcription factor NF-κB.Immunity26, 605–616 (2007).

    Article CAS PubMed  Google Scholar 

  53. Gantner, B. N., Simmons, R. M., Canavera, S. J., Akira, S. & Underhill, D. M. Collaborative induction of inflammatory responses by dectin-1 and Toll-like receptor 2.J. Exp. Med.197, 1107–1117 (2003).

    Article CAS PubMed PubMed Central  Google Scholar 

  54. Slack, E. C. et al. Syk-dependent ERK activation regulates IL-2 and IL-10 production by DC stimulated with zymosan.Eur. J. Immunol.37, 1600–1612 (2007).

    Article CAS PubMed  Google Scholar 

  55. Lucas, M., Zhang, X., Prasanna, V. & Mosser, D. M. ERK activation following macrophage FcγR ligation leads to chromatin modifications at the IL-10 locus.J. Immunol.175, 469–477 (2005).

    Article CAS PubMed  Google Scholar 

  56. Ma, W. et al. The p38 mitogen-activated kinase pathway regulates the human interleukin-10 promoter via the activation of Sp1 transcription factor in lipopolysaccharide-stimulated human macrophages.J. Biol. Chem.276, 13664–13674 (2001).

    Article CAS PubMed  Google Scholar 

  57. Kim, C. et al. The kinase p38α serves cell type-specific inflammatory functions in skin injury and coordinates pro- and anti-inflammatory gene expression.Nature Immunol.9, 1019–1027 (2008).

    Article CAS  Google Scholar 

  58. Park, J. M. et al. Signaling pathways and genes that inhibit pathogen-induced macrophage apoptosis — CREB and NF-κB as key regulators.Immunity23, 319–329 (2005).

    CAS PubMed  Google Scholar 

  59. Jarnicki, A. G. et al. Attenuating regulatory T cell induction by TLR agonists through inhibition of p38 MAPK signaling in dendritic cells enhances their efficacy as vaccine adjuvants and cancer immunotherapeutics.J. Immunol.180, 3797–3806 (2008).

    Article CAS PubMed  Google Scholar 

  60. Foey, A. D. et al. Regulation of monocyte IL-10 synthesis by endogenous IL-1 and TNF-α: role of the p38 and p42/44 mitogen-activated protein kinases.J. Immunol.160, 920–928 (1998).

    CAS PubMed  Google Scholar 

  61. Chi, H. et al. Dynamic regulation of pro- and anti-inflammatory cytokines by MAPK phosphatase 1 (MKP-1) in innate immune responses.Proc. Natl Acad. Sci. USA103, 2274–2279 (2006).

    Article CAS PubMed PubMed Central  Google Scholar 

  62. Zhao, Q. et al. MAP kinase phosphatase 1 controls innate immune responses and suppresses endotoxic shock.J. Exp. Med.203, 131–140 (2006).

    Article CAS PubMed PubMed Central  Google Scholar 

  63. Hammer, M. et al. Dual specificity phosphatase 1 (DUSP1) regulates a subset of LPS-induced genes and protects mice from lethal endotoxin shock.J. Exp. Med.203, 15–20 (2006).References 61–63 identify the p38 regulator DUSP1 as a negative regulator of IL-10 expression, providing evidence that prolonged p38 activation leads to stronger IL-10 transcription.

    Article CAS PubMed PubMed Central  Google Scholar 

  64. Ananieva, O. et al. The kinases MSK1 and MSK2 act as negative regulators of Toll-like receptor signaling.Nature Immunol.9, 1028–1036 (2008).This study shows that activation of MSK1 and MSK2 by p38 and ERK leads to enhanced IL-10 expression by macrophages and limits the production of pro-inflammatory cytokines.

    Article CAS  Google Scholar 

  65. Hammer, M. et al. Control of dual-specificity phosphatase-1 expression in activated macrophages by IL-10.Eur. J. Immunol.35, 2991–3001 (2005).

    Article CAS PubMed  Google Scholar 

  66. Lang, R., Patel, D., Morris, J. J., Rutschman, R. L. & Murray, P. J. Shaping gene expression in activated and resting primary macrophages by IL-10.J. Immunol.169, 2253–2263 (2002).

    Article CAS PubMed  Google Scholar 

  67. Staples, K. J. et al. IL-10 induces IL-10 in primary human monocyte-derived macrophages via the transcription factor Stat3.J. Immunol.178, 4779–4785 (2007).

    Article CAS PubMed  Google Scholar 

  68. Moore, K. W. et al. Homology of cytokine synthesis inhibitory factor (IL-10) to the Epstein–Barr virus gene BCRFI.Science248, 1230–1234 (1990).

    Article CAS PubMed  Google Scholar 

  69. Jankovic, D. et al. Conventional T-bet+Foxp3 Th1 cells are the major source of host-protective regulatory IL-10 during intracellular protozoan infection.J. Exp. Med.204, 273–283 (2007).

    Article CAS PubMed PubMed Central  Google Scholar 

  70. Anderson, C. F., Oukka, M., Kuchroo, V. J. & Sacks, D. CD4+CD25Foxp3 Th1 cells are the source of IL-10-mediated immune suppression in chronic cutaneous leishmaniasis.J. Exp. Med.204, 285–297 (2007).References 69 and 70 demonstrate the existence of IL-10-producing TH1 cells and their relevance duringin vivo infections.

    Article CAS PubMed PubMed Central  Google Scholar 

  71. Gabrysova, L. et al. Negative feedback control of the autoimmune response through antigen-induced differentiation of IL-10-secreting Th1 cells.J. Exp. Med.206, 1755–1767 (2009).

    Article CAS PubMed PubMed Central  Google Scholar 

  72. Saraiva, M. et al. Interleukin-10 production by Th1 cells requires interleukin-12-induced STAT4 transcription factor and ERK MAP kinase activation by high antigen dose.Immunity31, 209–219 (2009).This study provides the first molecular description of the pathways that regulate IL-10 expression by TH1, TH2 and TH17 cells, placing ERK, and possibly MAF, as components of a common pathway for IL-10 induction by T cells.

    Article CAS PubMed PubMed Central  Google Scholar 

  73. Gerosa, F. et al. CD4+ T cell clones producing both interferon-γ and interleukin-10 predominate in bronchoalveolar lavages of active pulmonary tuberculosis patients.Clin. Immunol.92, 224–234 (1999).

    Article CAS PubMed  Google Scholar 

  74. Meyaard, L., Hovenkamp, E., Otto, S. A. & Miedema, F. IL-12-induced IL-10 production by human T cells as a negative feedback for IL-12-induced immune responses.J. Immunol.156, 2776–2782 (1996).

    CAS PubMed  Google Scholar 

  75. Yssel, H. et al. IL-10 is produced by subsets of human CD4+ T cell clones and peripheral blood T cells.J. Immunol.149, 2378–2384 (1992).

    CAS PubMed  Google Scholar 

  76. Del Prete, G. et al. Human IL-10 is produced by both type 1 helper (Th1) and type 2 helper (Th2) T cell clones and inhibits their antigen-specific proliferation and cytokine production.J. Immunol.150, 353–360 (1993).

    CAS PubMed  Google Scholar 

  77. McGeachy, M. J. et al. TGF-β and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain TH-17 cell-mediated pathology.Nature Immunol.8, 1390–1397 (2007).

    Article CAS  Google Scholar 

  78. Fitzgerald, D. C. et al. Suppression of autoimmune inflammation of the central nervous system by interleukin 10 secreted by interleukin 27-stimulated T cells.Nature Immunol.8, 1372–1379 (2007).

    Article CAS  Google Scholar 

  79. Stumhofer, J. S. et al. Interleukins 27 and 6 induce STAT3-mediated T cell production of interleukin 10.Nature Immunol.8, 1363–1371 (2007).

    Article CAS  Google Scholar 

  80. Veldhoen, M. et al. Transforming growth factor-β 'reprograms' the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset.Nature Immunol.9, 1341–1346 (2008).

    Article CAS  Google Scholar 

  81. Rutz, S. et al. Notch regulates IL-10 production by T helper 1 cells.Proc. Natl Acad. Sci. USA105, 3497–3502 (2008).

    Article CAS PubMed PubMed Central  Google Scholar 

  82. Zhu, J. et al. Conditional deletion of Gata3 shows its essential function in TH1–TH2 responses.Nature Immunol.5, 1157–1165 (2004).

    Article CAS  Google Scholar 

  83. Shoemaker, J., Saraiva, M. & O'Garra, A. GATA-3 directly remodels theIL-10 locus independently of IL-4 in CD4+ T cells.J. Immunol.176, 3470–3479 (2006).This study describes a new role for GATA3, showing that in addition to being the master regulator of TH2 cell differentiation, GATA3 also controls the remodelling of theIl10 locus in TH2 cells.

    Article CAS PubMed  Google Scholar 

  84. Chang, H. D. et al. Expression of IL-10 in Th memory lymphocytes is conditional on IL-12 or IL-4, unless the IL-10 gene is imprinted by GATA-3.Eur. J. Immunol.37, 807–817 (2007).

    Article CAS PubMed  Google Scholar 

  85. Xu, J. et al. c-Maf regulates IL-10 expression during Th17 polarization.J. Immunol.182, 6226–6236 (2009).This study provides evidence that MAF is a key transcription factor for IL-10 expression by TH17 cells and that MAF is not a TH2 cell-specific transcription factor.

    Article CAS PubMed  Google Scholar 

  86. Spolski, R., Kim, H. P., Zhu, W., Levy, D. E. & Leonard, W. J. IL-21 mediates suppressive effects via its induction of IL-10.J. Immunol.182, 2859–2867 (2009).

    Article CAS PubMed  Google Scholar 

  87. Batten, M. et al. Cutting edge: IL-27 is a potent inducer of IL-10 but not FoxP3 in murine T cells.J. Immunol.180, 2752–2756 (2008).

    Article CAS PubMed  Google Scholar 

  88. Pot, C. et al. Cutting edge: IL-27 induces the transcription factor c-Maf, cytokine IL-21, and the costimulatory receptor ICOS that coordinately act together to promote differentiation of IL-10-producing Tr1 cells.J. Immunol.183, 797–801 (2009).In addition to reference 85, this study supports the role of MAF as a key transcription factor for IL-10 expression in T cells, providing some insights on the molecular pathways that link MAF to IL-10 expression.

    Article CAS PubMed  Google Scholar 

  89. Kalliolias, G. D. & Ivashkiv, L. B. IL-27 activates human monocytes via STAT1 and suppresses IL-10 production but the inflammatory functions of IL-27 are abrogated by TLRs and p38.J. Immunol.180, 6325–6333 (2008).

    Article CAS PubMed  Google Scholar 

  90. Fuqua, C. F., Akomeah, R., Price, J. O. & Adunyah, S. E. Involvement of ERK-1/2 in IL-21-induced cytokine production in leukemia cells and human monocytes.Cytokine44, 101–107 (2008).

    Article CAS PubMed PubMed Central  Google Scholar 

  91. Owaki, T., Asakawa, M., Fukai, F., Mizuguchi, J. & Yoshimoto, T. IL-27 induces Th1 differentiation via p38 MAPK/T-bet- and intercellular adhesion molecule-1/LFA-1/ERK1/2-dependent pathways.J. Immunol.177, 7579–7587 (2006).

    Article CAS PubMed  Google Scholar 

  92. Maynard, C. L. et al. Contrasting roles for all-trans retinoic acid in TGF-β-mediated induction ofFoxp3 andIl10 genes in developing regulatory T cells.J. Exp. Med.206, 343–357 (2009).This study provides molecular evidence for the regulation of IL-10 expression by TReg cells.

    Article CAS PubMed PubMed Central  Google Scholar 

  93. Haringer, B., Lozza, L., Steckel, B. & Geginat, J. Identification and characterization of IL-10/IFN-γ-producing effector-like T cells with regulatory function in human blood.J. Exp. Med.206, 1009–1017 (2009).

    Article PubMed CAS PubMed Central  Google Scholar 

  94. Rivino, L. et al. CCR6 is expressed on an IL-10-producing, auto-reactive memory T cell subset with context-dependent regulatory function.J. Exp. Med. (in the press).

  95. Hori, S., Nomura, T. & Sakaguchi, S. Control of regulatory T cell development by the transcription factor Foxp3.Science299, 1057–1061 (2003).

    Article CAS PubMed  Google Scholar 

  96. Vieira, P. L. et al. IL-10-secreting regulatory T cells do not express Foxp3 but have comparable regulatory function to naturally occurring CD4+CD25+ regulatory T cells.J. Immunol.172, 5986–5993 (2004).

    Article CAS PubMed  Google Scholar 

  97. Maynard, C. L. et al. Regulatory T cells expressing interleukin 10 develop from Foxp3+ and Foxp3 precursor cells in the absence of interleukin 10.Nature Immunol.8, 931–941 (2007).

    Article CAS  Google Scholar 

  98. Belkaid, Y. Regulatory T cells and infection: a dangerous necessity.Nature Rev. Immunol.7, 875–888 (2007).

    Article CAS  Google Scholar 

  99. Josefowicz, S. Z. & Rudensky, A. Control of regulatory T cell lineage commitment and maintenance.Immunity30, 616–625 (2009).

    Article CAS PubMed PubMed Central  Google Scholar 

  100. Shevach, E. M. Mechanisms of foxp3+ T regulatory cell-mediated suppression.Immunity30, 636–645 (2009).

    Article CAS PubMed  Google Scholar 

  101. Barthlott, T. et al. CD25+ CD4+ T cells compete with naive CD4+ T cells for IL-2 and exploit it for the induction of IL-10 production.Int. Immunol.17, 279–288 (2005).

    Article CAS PubMed  Google Scholar 

  102. de la Rosa, M., Rutz, S., Dorninger, H. & Scheffold, A. Interleukin-2 is essential for CD4+CD25+ regulatory T cell function.Eur. J. Immunol.34, 2480–2488 (2004).

    Article CAS PubMed  Google Scholar 

  103. Sundstedt, A., O'Neill, E. J., Nicolson, K. S. & Wraith, D. C. Role for IL-10 in suppression mediated by peptide-induced regulatory T cellsin vivo.J. Immunol.170, 1240–1248 (2003).

    Article CAS PubMed  Google Scholar 

  104. Mills, K. H. & McGuirk, P. Antigen-specific regulatory T cells — their induction and role in infection.Semin. Immunol.16, 107–117 (2004).

    Article CAS PubMed  Google Scholar 

  105. Akbari, O. et al. Antigen-specific regulatory T cells develop via the ICOS–ICOS-ligand pathway and inhibit allergen-induced airway hyperreactivity.Nature Med.8, 1024–1032 (2002).

    Article CAS PubMed  Google Scholar 

  106. Ito, T. et al. Plasmacytoid dendritic cells prime IL-10-producing T regulatory cells by inducible costimulator ligand.J. Exp. Med.204, 105–115 (2007).

    Article CAS PubMed PubMed Central  Google Scholar 

  107. Witsch, E. J. et al. ICOS and CD28 reversely regulate IL-10 on re-activation of human effector T cells with mature dendritic cells.Eur. J. Immunol.32, 2680–2686 (2002).

    Article CAS PubMed  Google Scholar 

  108. Lohning, M. et al. Expression of ICOSin vivo defines CD4+ effector T cells with high inflammatory potential and a strong bias for secretion of interleukin 10.J. Exp. Med.197, 181–193 (2003).

    Article CAS PubMed PubMed Central  Google Scholar 

  109. Salgame, P. et al. Differing lymphokine profiles of functional subsets of human CD4 and CD8 T cell clones.Science254, 279–282 (1991).

    Article CAS PubMed  Google Scholar 

  110. Tanchot, C. et al. Modifications of CD8+ T cell function duringin vivo memory or tolerance induction.Immunity8, 581–590 (1998).

    Article CAS PubMed  Google Scholar 

  111. Gilliet, M. & Liu, Y. J. Generation of human CD8 T regulatory cells by CD40 ligand-activated plasmacytoid dendritic cells.J. Exp. Med.195, 695–704 (2002).

    Article CAS PubMed PubMed Central  Google Scholar 

  112. O'Garra, A. et al. Ly-1 B (B-1) cells are the main source of B cell-derived interleukin 10.Eur. J. Immunol.22, 711–717 (1992).

    Article CAS PubMed  Google Scholar 

  113. Burdin, N., Rousset, F. & Banchereau, J. B-cell-derived IL-10: production and function.Methods11, 98–111 (1997).

    Article CAS PubMed  Google Scholar 

  114. Mauri, C., Gray, D., Mushtaq, N. & Londei, M. Prevention of arthritis by interleukin 10-producing B cells.J. Exp. Med.197, 489–501 (2003).

    Article CAS PubMed PubMed Central  Google Scholar 

  115. Fillatreau, S., Sweenie, C. H., McGeachy, M. J., Gray, D. & Anderton, S. M. B cells regulate autoimmunity by provision of IL-10.Nature Immunol.3, 944–950 (2002).

    Article CAS  Google Scholar 

  116. Sun, C. M., Deriaud, E., Leclerc, C. & Lo-Man, R. Upon TLR9 signaling, CD5+ B cells control the IL-12-dependent Th1-priming capacity of neonatal DCs.Immunity22, 467–477 (2005).

    Article CAS PubMed  Google Scholar 

  117. Heine, G. et al. 1, 25-dihydroxyvitamin D3 promotes IL-10 production in human B cells.Eur. J. Immunol.38, 2210–2218 (2008).

    Article CAS PubMed  Google Scholar 

  118. Grimbaldeston, M. A., Nakae, S., Kalesnikoff, J., Tsai, M. & Galli, S. J. Mast cell-derived interleukin 10 limits skin pathology in contact dermatitis and chronic irradiation with ultraviolet B.Nature Immunol.8, 1095–1104 (2007).

    Article CAS  Google Scholar 

  119. Masuda, A., Yoshikai, Y., Aiba, K. & Matsuguchi, T. Th2 cytokine production from mast cells is directly induced by lipopolysaccharide and distinctly regulated by c-Jun N-terminal kinase and p38 pathways.J. Immunol.169, 3801–3810 (2002).

    Article CAS PubMed  Google Scholar 

  120. Brightbill, H. D., Plevy, S. E., Modlin, R. L. & Smale, S. T. A prominent role for Sp1 during lipopolysaccharide-mediated induction of the IL-10 promoter in macrophages.J. Immunol.164, 1940–1951 (2000).

    Article CAS PubMed  Google Scholar 

  121. Tone, M., Powell, M. J., Tone, Y., Thompson, S. A. & Waldmann, H. IL-10 gene expression is controlled by the transcription factors Sp1 and Sp3.J. Immunol.165, 286–291 (2000).

    Article CAS PubMed  Google Scholar 

  122. Brenner, S. et al. cAMP-induced interleukin-10 promoter activation depends on CCAAT/enhancer-binding protein expression and monocytic differentiation.J. Biol. Chem.278, 5597–5604 (2003).

    Article CAS PubMed  Google Scholar 

  123. Liu, Y. W., Tseng, H. P., Chen, L. C., Chen, B. K. & Chang, W. C. Functional cooperation of simian virus 40 promoter factor 1 and CCAAT/enhancer-binding protein β and δ in lipopolysaccharide-induced gene activation of IL-10 in mouse macrophages.J. Immunol.171, 821–828 (2003).

    Article CAS PubMed  Google Scholar 

  124. Ziegler-Heitbrock, L. et al. IFN-α induces the human IL-10 gene by recruiting both IFN regulatory factor 1 and Stat3.J. Immunol.171, 285–290 (2003).

    Article CAS PubMed  Google Scholar 

  125. Mori, N. & Prager, D. Activation of the interleukin-10 gene in the human T lymphoma line HuT 78: identification and characterization of NF-κB binding sites in the regulatory region of the interleukin-10 gene.Eur. J. Haematol.59, 162–170 (1997).

    Article CAS PubMed  Google Scholar 

  126. Cao, S., Zhang, X., Edwards, J. P. & Mosser, D. M. NF-κB1 (p50) homodimers differentially regulate pro- and anti-inflammatory cytokines in macrophages.J. Biol. Chem.281, 26041–26050 (2006).

    Article CAS PubMed  Google Scholar 

  127. Chakrabarti, A. et al. Protein kinase R-dependent regulation of interleukin-10 in response to double-stranded RNA.J. Biol. Chem.283, 25132–25139 (2008).

    Article CAS PubMed PubMed Central  Google Scholar 

  128. Csoka, B. et al. A2A adenosine receptors and C/EBPβ are crucially required for IL-10 production by macrophages exposed toEscherichia coli.Blood110, 2685–2695 (2007).

    Article CAS PubMed PubMed Central  Google Scholar 

  129. Chung, E. Y. et al. Interleukin-10 expression in macrophages during phagocytosis of apoptotic cells is mediated by homeodomain proteins Pbx1 and Prep-1.Immunity27, 952–964 (2007).

    Article CAS PubMed PubMed Central  Google Scholar 

  130. Kitani, A. et al. Transforming growth factor (TGF)-β1-producing regulatory T cells induce Smad-mediated interleukin 10 secretion that facilitates coordinated immunoregulatory activity and amelioration of TGF-β1-mediated fibrosis.J. Exp. Med.198, 1179–1188 (2003).

    Article CAS PubMed PubMed Central  Google Scholar 

  131. Kim, J. I., Ho, I. C., Grusby, M. J. & Glimcher, L. H. The transcription factor c-Maf controls the production of interleukin-4 but not other Th2 cytokines.Immunity10, 745–751 (1999).

    Article CAS PubMed  Google Scholar 

  132. Cao, S., Liu, J., Song, L. & Ma, X. The protooncogene c-Maf is an essential transcription factor for IL-10 gene expression in macrophages.J. Immunol.174, 3484–3492 (2005).

    Article CAS PubMed  Google Scholar 

  133. Wang, Z. Y. et al. Regulation of IL-10 gene expression in Th2 cells by Jun proteins.J. Immunol.174, 2098–2105 (2005).

    Article CAS PubMed  Google Scholar 

  134. Jones, E. A. & Flavell, R. A. Distal enhancer elements transcribe intergenic RNA in the IL-10 family gene cluster.J. Immunol.175, 7437–7446 (2005).

    Article CAS PubMed  Google Scholar 

  135. Im, S. H., Hueber, A., Monticelli, S., Kang, K. H. & Rao, A. Chromatin-level regulation of the IL10 gene in T cells.J. Biol. Chem.279, 46818–46825 (2004).

    Article CAS PubMed  Google Scholar 

  136. Grant, L. R. et al. Stat4-dependent, T-bet-independent regulation of IL-10 in NK cells.Genes Immun.9, 316–327 (2008).

    Article CAS PubMed PubMed Central  Google Scholar 

  137. Grenningloh, R., Kang, B. Y. & Ho, I. C. Ets-1, a functional cofactor of T-bet, is essential for Th1 inflammatory responses.J. Exp. Med.201, 615–626 (2005).

    Article CAS PubMed PubMed Central  Google Scholar 

  138. Sullivan, B. M. et al. Increased susceptibility of mice lacking T-bet to infection withMycobacterium tuberculosis correlates with increased IL-10 and decreased IFN-γ production.J. Immunol.175, 4593–4602 (2005).

    Article CAS PubMed  Google Scholar 

  139. Yee, C. S. et al. Enhanced production of IL-10 by dendritic cells deficient in CIITA.J. Immunol.174, 1222–1229 (2005).

    Article CAS PubMed  Google Scholar 

  140. VanDeusen, J. B. et al. STAT-1-mediated repression of monocyte interleukin-10 gene expressionin vivo.Eur. J. Immunol.36, 623–630 (2006).

    Article CAS PubMed  Google Scholar 

  141. Riemann, M., Endres, R., Liptay, S., Pfeffer, K. & Schmid, R. M. The IκB protein Bcl-3 negatively regulates transcription of the IL-10 gene in macrophages.J. Immunol.175, 3560–3568 (2005).

    Article CAS PubMed  Google Scholar 

  142. Kusam, S., Toney, L. M., Sato, H. & Dent, A. L. Inhibition of Th2 differentiation and GATA-3 expression by BCL-6.J. Immunol.170, 2435–2441 (2003).

    Article CAS PubMed  Google Scholar 

  143. Nurieva, R. I. et al. Bcl6 mediates the development of T follicular helper cells.Science325, 1001–1005 (2009).

    Article CAS PubMed PubMed Central  Google Scholar 

  144. Johnston, R. J. et al. Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of T follicular helper cell differentiation.Science325, 1006–1010 (2009).

    Article CAS PubMed PubMed Central  Google Scholar 

  145. Yu, D. et al. The transcriptional repressor Bcl-6 directs T follicular helper cell lineage commitment.Immunity31, 457–468 (2009).

    Article CAS PubMed  Google Scholar 

  146. Anderson, P. Post-transcriptional control of cytokine production.Nature Immunol.9, 353–359 (2008).

    Article CAS  Google Scholar 

  147. Powell, M. J., Thompson, S. A., Tone, Y., Waldmann, H. & Tone, M. Posttranscriptional regulation of IL-10 gene expression through sequences in the 3′-untranslated region.J. Immunol.165, 292–296 (2000).

    Article CAS PubMed  Google Scholar 

  148. Brown, C. Y., Lagnado, C. A., Vadas, M. A. & Goodall, G. J. Differential regulation of the stability of cytokine mRNAs in lipopolysaccharide-activated blood monocytes in response to interleukin-10.J. Biol. Chem.271, 20108–20112 (1996).

    Article CAS PubMed  Google Scholar 

  149. Kishore, R., Tebo, J. M., Kolosov, M. & Hamilton, T. A. Cutting edge: clustered AU-rich elements are the target of IL-10-mediated mRNA destabilization in mouse macrophages.J. Immunol.162, 2457–2461 (1999).

    CAS PubMed  Google Scholar 

  150. Nemeth, Z. H. et al. Adenosine augments IL-10 production by macrophages through an A2B receptor-mediated posttranscriptional mechanism.J. Immunol.175, 8260–8270 (2005).

    Article CAS PubMed  Google Scholar 

  151. Stoecklin, G. et al. Genome-wide analysis identifies interleukin-10 mRNA as target of tristetraprolin.J. Biol. Chem.283, 11689–11699 (2008).

    Article CAS PubMed PubMed Central  Google Scholar 

  152. Tudor, C. et al. The p38 MAPK pathway inhibits tristetraprolin-directed decay of interleukin-10 and pro-inflammatory mediator mRNAs in murine macrophages.FEBS Lett.583, 1933–1938 (2009).

    Article CAS PubMed PubMed Central  Google Scholar 

  153. Schaljo, B. et al. Tristetraprolin is required for full anti-inflammatory response of murine macrophages to IL-10.J. Immunol.183, 1197–1206 (2009).

    Article CAS PubMed  Google Scholar 

  154. Sharma, A. et al. Posttranscriptional regulation of interleukin-10 expression by hsa-miR-106a.Proc. Natl Acad. Sci. USA106, 5761–5766 (2009).

    Article CAS PubMed PubMed Central  Google Scholar 

  155. Izcue, A., Coombes, J. L. & Powrie, F. Regulatory lymphocytes and intestinal inflammation.Annu. Rev. Immunol.27, 313–338 (2009).

    Article CAS PubMed  Google Scholar 

  156. Spencer, S. D. et al. The orphan receptor CRF2–4 is an essential subunit of the interleukin 10 receptor.J. Exp. Med.187, 571–578 (1998).

    Article CAS PubMed PubMed Central  Google Scholar 

  157. Roers, A. et al. T cell-specific inactivation of the interleukin 10 gene in mice results in enhanced T cell responses but normal innate responses to lipopolysaccharide or skin irritation.J. Exp. Med.200, 1289–1297 (2004).

    Article CAS PubMed PubMed Central  Google Scholar 

  158. Groux, H. et al. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis.Nature389, 737–742 (1997).

    Article CAS PubMed  Google Scholar 

  159. Asseman, C., Read, S. & Powrie, F. Colitogenic Th1 cells are present in the antigen-experienced T cell pool in normal mice: control by CD4+ regulatory T cells and IL-10.J. Immunol.171, 971–978 (2003).

    Article CAS PubMed  Google Scholar 

  160. Van Montfrans, C. et al. Prevention of colitis by interleukin 10-transduced T lymphocytes in the SCID mice transfer model.Gastroenterology123, 1865–1876 (2002).

    Article CAS PubMed  Google Scholar 

  161. Davidson, N. J. et al. T helper cell 1-type CD4+ T cells, but not B cells, mediate colitis in interleukin 10-deficient mice.J. Exp. Med.184, 241–251 (1996).

    Article CAS PubMed  Google Scholar 

  162. Franke, A. et al. Sequence variants inIL10,ARPC2 and multiple other loci contribute to ulcerative colitis susceptibility.Nature Genet.40, 1319–1323 (2008).

    Article CAS PubMed  Google Scholar 

  163. Noguchi, E., Homma, Y., Kang, X., Netea, M. G. & Ma, X. A Crohn's disease-associated NOD2 mutation suppresses transcription of human IL10 by inhibiting activity of the nuclear ribonucleoprotein hnRNP-A1.Nature Immunol.10, 471–479 (2009).

    Article CAS  Google Scholar 

  164. Coombes, J. L. et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-β and retinoic acid-dependent mechanism.J. Exp. Med.204, 1757–1764 (2007).

    Article CAS PubMed PubMed Central  Google Scholar 

  165. Benson, M. J., Pino-Lagos, K., Rosemblatt, M. & Noelle, R. J. All-trans retinoic acid mediates enhanced T reg cell growth, differentiation, and gut homing in the face of high levels of co-stimulation.J. Exp. Med.204, 1765–1774 (2007).

    Article CAS PubMed PubMed Central  Google Scholar 

  166. Sun, C. M. et al. Small intestine lamina propria dendritic cells promotede novo generation of Foxp3 T reg cells via retinoic acid.J. Exp. Med.204, 1775–1785 (2007).

    Article CAS PubMed PubMed Central  Google Scholar 

  167. Zhang, X., Edwards, J. P. & Mosser, D. M. Dynamic and transient remodeling of the macrophage IL-10 promoter during transcription.J. Immunol.177, 1282–1288 (2006).

    Article CAS PubMed  Google Scholar 

  168. Villagra, A. et al. The histone deacetylase HDAC11 regulates the expression of interleukin 10 and immune tolerance.Nature Immunol.10, 92–100 (2009).

    Article CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Gabrysova for critical reading of and commenting on this review and A. Howes for careful proof reading.

Author information

Authors and Affiliations

  1. Microbiology and Infection Research Domain, Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal

    Margarida Saraiva

  2. Division of Immunoregulation, Medical Research Council National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, UK

    Anne O'Garra

Authors
  1. Margarida Saraiva

    You can also search for this author inPubMed Google Scholar

  2. Anne O'Garra

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toAnne O'Garra.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Glossary

Chromatin

Composed of nucleosomes, this is the basic repeating unit of eukaryotic genomes. Nucleosomes consist of 146 base pairs of DNA wound around an octamer of histone proteins.

Plasmacytoid DC

A DC that lacks myeloid markers such as CD11c and CD33 but expresses high levels of HLA-DR and CD123. These cells produce high levels of type I interferons in response to viral infection.

Notch

A signalling system comprising highly conserved transmembrane receptors that regulate cell fate choice in the development of many cell lineages. Therefore, they are crucial in the regulation of embryonic differentiation and development.

DNaseI hypersensitive sites

Sites of nuclease sensitivity in the nuclei on exposure of cells to limiting concentrations of DNaseI. The digested regions of DNA correspond to sites of open DNA, which might be factor-binding sites or areas of altered nucleosome conformation.

Chromatin remodelling

Alterations that are induced in chromatin by enzymes that modify the extent of acetylation, methylation or other covalent modifications of histones.

Acetylation

A post-translational modification of chromatin components, particularly histones. It correlates with actively transcribed chromatin.

T follicular helper cell

(TFH cell). A CD4+ T cell that provides help to B cells in follicles and germinal centres. The TFH cell signature includes the expression of CXCR5, ICOS, CD40 ligand and IL-21, factors that mediate TFH cell homing to follicles and B cell help.

MicroRNAs

Single-stranded RNA molecules of approximately 21–23 nucleotides in length that regulate the expression of other genes.

Rights and permissions

About this article

Access through your institution
Buy or subscribe

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp