Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature
  • Article
  • Published:

The genetic history of Ice Age Europe

Naturevolume 534pages200–205 (2016)Cite this article

Subjects

Abstract

Modern humans arrived in Europe ~45,000 years ago, but little is known about their genetic composition before the start of farming ~8,500 years ago. Here we analyse genome-wide data from 51 Eurasians from ~45,000–7,000 years ago. Over this time, the proportion of Neanderthal DNA decreased from 3–6% to around 2%, consistent with natural selection against Neanderthal variants in modern humans. Whereas there is no evidence of the earliest modern humans in Europe contributing to the genetic composition of present-day Europeans, all individuals between ~37,000 and ~14,000 years ago descended from a single founder population which forms part of the ancestry of present-day Europeans. An ~35,000-year-old individual from northwest Europe represents an early branch of this founder population which was then displaced across a broad region, before reappearing in southwest Europe at the height of the last Ice Age ~19,000 years ago. During the major warming period after ~14,000 years ago, a genetic component related to present-day Near Easterners became widespread in Europe. These results document how population turnover and migration have been recurring themes of European prehistory.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Location and age of the 51 ancient modern humans.
Figure 2: Decrease of Neanderthal ancestry over time.
Figure 3: Genetic clustering of the ancient modern humans.
Figure 4: Population history inferences.

Similar content being viewed by others

Accession codes

Primary accessions

European Nucleotide Archive

Data deposits

The aligned sequences are available through the European Nucleotide Archive under accession numberPRJEB13123.

References

  1. Gamble, C., Davies, W., Pettitt, P. & Richards, M. Climate change and evolving human diversity in Europe during the last glacial. Philosoph.Trans. Royal Soc.B 359, 243–253 (2004)

    Article  Google Scholar 

  2. Jones, E. R. et al. Upper Palaeolithic genomes reveal deep roots of modern Eurasians.Nature Commun.6, 8912 (2015)

    Article ADS CAS  Google Scholar 

  3. Fu, Q. et al. An early modern human from Romania with a recent Neanderthal ancestor.Nature524, 216–219 (2015)

    Article ADS CAS PubMed PubMed Central  Google Scholar 

  4. Seguin-Orlando, A. et al. Paleogenomics. Genomic structure in Europeans dating back at least 36,200 years.Science346, 1113–1118 (2014)

    Article ADS CAS PubMed  Google Scholar 

  5. Dabney, J. et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments.Proc. Natl Acad. Sci. USA110, 15758–15763 (2013)

    Article ADS CAS PubMed PubMed Central  Google Scholar 

  6. Meyer, M. & Kircher, M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing.Cold Spring Harbor Protocols2010, pdb.prot5448 (2010)

    Article PubMed  Google Scholar 

  7. Meyer, M. et al. A high-coverage genome sequence from an archaic Denisovan individual.Science338, 222–226 (2012)

    Article ADS CAS PubMed PubMed Central  Google Scholar 

  8. Rohland, N., Harney, E., Mallick, S., Nordenfelt, S. & Reich, D. Partial uracil-DNA-glycosylase treatment for screening of ancient DNA. Phil.Trans. R. Soc. Lond. B370, 20130624 (2015)

    Article CAS  Google Scholar 

  9. Haak, W. et al. Massive migration from the steppe was a source for Indo-European languages in Europe.Nature522, 207–211 (2015)

    Article ADS CAS PubMed PubMed Central  Google Scholar 

  10. Korneliussen, T. S., Albrechtsen, A. & Nielsen, R. ANGSD: analysis of next generation sequencing data. BMCBioinformatics15, 356 (2014)

    PubMed PubMed Central  Google Scholar 

  11. Krause, J. et al. A complete mtDNA genome of an early modern human from Kostenki, Russia.Curr. Biol.20, 231–236 (2010)

    Article CAS PubMed  Google Scholar 

  12. Skoglund, P. et al. Origins and genetic legacy of Neolithic farmers and hunter-gatherers in Europe.Science336, 466–469 (2012)

    Article ADS CAS PubMed  Google Scholar 

  13. Fu, Q. et al. Genome sequence of a 45,000-year-old modern human from western Siberia.Nature514, 445–449 (2014)

    Article ADS CAS PubMed PubMed Central  Google Scholar 

  14. Raghavan, M. et al. Upper Palaeolithic Siberian genome reveals dual ancestry of Native Americans.Nature505, 87–91 (2014)

    Article ADS PubMed CAS  Google Scholar 

  15. Lazaridis, I. et al. Ancient human genomes suggest three ancestral populations for present-day Europeans.Nature513, 409–413 (2014)

    Article ADS CAS PubMed PubMed Central  Google Scholar 

  16. Olalde, I. et al. Derived immune and ancestral pigmentation alleles in a 7,000-year-old Mesolithic European.Nature507, 225–228 (2014)

    Article ADS CAS PubMed PubMed Central  Google Scholar 

  17. Gamba, C. et al. Genome flux and stasis in a five millennium transect of European prehistory.Nature Commun.5, 5257 (2014)

    Article ADS CAS  Google Scholar 

  18. Green, R. E. et al. A draft sequence of the Neandertal genome.Science328, 710–722 (2010)

    Article ADS CAS PubMed PubMed Central  Google Scholar 

  19. Prüfer, K. et al. The complete genome sequence of a Neanderthal from the Altai Mountains.Nature505, 43–49 (2014)

    Article ADS PubMed CAS  Google Scholar 

  20. Mallick, S. et al. The landscape of human genome diversity. Nature (in the press)

  21. Reich, D. et al. Genetic history of an archaic hominin group from Denisova Cave in Siberia.Nature468, 1053–1060 (2010)

    Article ADS CAS PubMed PubMed Central  Google Scholar 

  22. Sankararaman, S. et al. The genomic landscape of Neanderthal ancestry in present-day humans.Nature507, 354–357 (2014)

    Article ADS CAS PubMed PubMed Central  Google Scholar 

  23. Vernot, B. & Akey, J. M. Resurrecting surviving Neandertal lineages from modern human genomes.Science343, 1017–1021 (2014)

    Article ADS CAS PubMed  Google Scholar 

  24. Harris, K. & Nielsen, R. The genetic cost of Neanderthal introgression.Geneticshttp://dx.doi.org/10.1534/genetics.116.186890 (2016)

  25. Juric, I., Aeschbacher, S. & Coop, G. The strength of selection against Neanderthal introgression. Preprint athttp://dx.doi.org/10.1101/030148 (2015)

  26. Posth, C. et al. Pleistocene mitochondrial genomes suggest a single major dispersal of Non-Africans and a Late Glacial population turnover in Europe.Curr. Biol.26, 827–833 (2016)

    Article CAS PubMed  Google Scholar 

  27. Olivieri, A. et al. The mtDNA legacy of the Levantine early Upper Palaeolithic in Africa.Science314, 1767–1770 (2006)

    Article ADS CAS PubMed  Google Scholar 

  28. Patterson, N. et al. Ancient admixture in human history.Genetics192, 1065–1093 (2012)

    Article PubMed PubMed Central  Google Scholar 

  29. Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals.Genome Res.19, 1655–1664 (2009)

    Article CAS PubMed PubMed Central  Google Scholar 

  30. Skotte, L., Korneliussen, T. S. & Albrechtsen, A. Estimating individual admixture proportions from next generation sequencing data.Genetics195, 693–702 (2013)

    Article CAS PubMed PubMed Central  Google Scholar 

  31. Conard, N. J. A female figurine from the basal Aurignacian of Hohle Fels Cave in southwestern Germany.Nature459, 248–252 (2009)

    Article ADS CAS PubMed  Google Scholar 

  32. Straus, L. G. After the deep freeze: confronting “Magdalenian” realities in Cantabrian Spain and beyond.J. Archaeol. Method Theory20, 236–255 (2013)

    Article  Google Scholar 

  33. Weaver, A. J., Saenko, O. A., Clark, P. U. & Mitrovica, J. X. Meltwater pulse 1A from Antarctica as a trigger of the Bølling-Allerød warm interval.Science299, 1709–1713 (2003)

    Article ADS CAS PubMed  Google Scholar 

  34. Montoya, C. & Peresani, M. Nouveaux éléments de diachronie dans l’Epigravettien récent des Préalpes de la Vénétie inD’un monde à l’autre.Les systèmes lithiques pendant le Tardiglaciaire autour de la Méditerranée nord-occidentale (eds Bracco, J.-P. & Montoya, C. ) 123–138 (Mémoire Société Préhistorique Française, 2005)

  35. Valentin, B.Jalons pour une paléohistoire des derniers chasseurs (XIVe-VIe millénaires av. J.-C.) (Cahiers archéologiques de Paris 1 – 1, Publications de la Sorbonne, 2008)

  36. Pala, M. et al. Mitochondrial DNA signals of late glacial recolonization of Europe from near eastern refugia.Am. J. Hum. Genet.90, 915–924 (2012)

    Article CAS PubMed PubMed Central  Google Scholar 

  37. Rougier, H. et al. Peştera cu Oase 2 and the cranial morphology of early modern Europeans.Proc. Natl Acad. Sci. USA104, 1165–1170 (2007)

    Article ADS CAS PubMed PubMed Central  Google Scholar 

  38. Marom, A., McCullagh, J. S. O., Higham, T. F. G., Sinitsyn, A. A. & Hedges, R. E. M. Single amino acid radiocarbon dating of Upper Paleolithic modern humans.Proc. Natl Acad. Sci. USA109, 6878–6881 (2012)

    Article ADS CAS PubMed PubMed Central  Google Scholar 

  39. Soficaru, A., Doboş, A. & Trinkaus, E. Early modern humans from the Peştera Muierii, Baia de Fier,Romania. Proc. Natl Acad. Sci. USA103, 17196–17201 (2006)

    Article ADS CAS PubMed  Google Scholar 

  40. Palma di Cesnola, A.Paglicci. L’Aurignaziano e il Gravettiano antico (Claudio Grenzi, 2004)

  41. Soficaru, A., Petrea, C., Doboş, A. & Trinkaus, E. The human cranium from the Peştera Cioclovina Uscată, Romania — context, age, taphonomy, morphology, and paleopathology.Curr. Anthropol.48, 611–619 (2007)

    Article  Google Scholar 

  42. Sinitsyn, A. A.Les sépultures de Kostenki: chronologie, attribution culturelle, rite funéraire in La spiritualité ( Otte M. (ed.)), Proceedings of UISPP conference, Liège, ERAUL106, 237–244 (2004)

    Google Scholar 

  43. Simon, U., Haendel, M., Einwoegerer, T. & Neugebauer-Maresch, C. The archaeological record of the Gravettian open air site Krems-Wachtberg.Quat. Int.351, 5–13 (2014)

    Article  Google Scholar 

  44. Trinkaus, E. & Svoboda, J.Early Modern Human Evolution in Central Europe: The People of Dolní Vstonice and Pavlov,Vol. 12 (Oxford Univ. Press, 2006)

  45. Azzi, C. M., Bigliocca, L. & Piovan, F. Florence radiocarbon dates II.Radiocarbon16, 10–14 (1974)

    Article  Google Scholar 

  46. Cupillard, C. et al. Changes in ecosystems, climate and societies in the Jura Mountains between 40 and 8 ka cal BP.Quat. Int.378, 40–72 (2015)

    Article  Google Scholar 

  47. Housley, R. A., Gamble, C. S., Street, M. & Pettitt, P. B. Radiocarbon evidence for the Lateglacial human recolonisation of NorthernEurope. Proc. Prehist. Soc.63, 25–54 (1997)

    Article  Google Scholar 

  48. Benazzi, S. et al. Early dispersal of modern humans in Europe and implications for Neanderthal behaviour.Nature479, 525–528 10.1038/nature10617 (2011)

    Article ADS CAS PubMed  Google Scholar 

  49. Simon, U. Die Burkhardtshöhle — eine Magdalénienstation am Nordrand der Schwäbischen Alb,Magisterarbeit (1993)

  50. Vercellotti, G., Alciati, G., Richards, M. P. & Formicola, V. The Late Upper Paleolithic skeleton Villabruna 1 (Italy): a source of data on biology and behavior of a 14.000 year-old hunter.J. Anthropol. Sci.86, 143–163 (2008)

    PubMed  Google Scholar 

  51. Drucker, D. G., Bridault, A., Cupillard, C., Hujic, A. & Bocherens, H. Evolution of habitat and environment of red deer (Cervus elaphus) during the Late-glacial and early Holocene in eastern France (French Jura and the western Alps) using multi-isotope analysis (δ13C, δ15N, δ18O, δ34S) of archaeological remains.Quat. Int.245, 268–278 (2011)

    Article  Google Scholar 

  52. Valentin, F. et al. Découvertes récentes d’inhumations et d’une incinération datées du Mésolithique en Île-de-France.Revue Archéologique d’Île-de-France1, 21–42 (2008)

    Google Scholar 

  53. Bramanti, B. et al. Genetic discontinuity between local hunter-gatherers and central Europe’s first farmers.Science326, 137–140 (2009)

    Article ADS CAS PubMed  Google Scholar 

  54. Price, T. D. & Jacobs, K. Olenii Ostrov — first radiocarbon dates from a major mesolithic cemetery Karelia, USSR.Antiquity64, 849–853 (1990)

    Article  Google Scholar 

  55. Wehrberger, K. “Der Streit ward definitiv beendet...” Eine mesolithische Bestattung aus der Bocksteinhöhle im Lonetal, Alb-Donau-Kreis. Zur Erinnerung an Ludwig Bürger (1844–1898).Archäologisches Korrespondenzblatt30, 15–31 (2000)

    Google Scholar 

  56. Orschiedt, J. Manipulationen an menschlichen Skelettresten. Taphonomische Prozesse, Sekundärbestattungen oder Kannibalismus. Dissertation.Urgeschichtliche Materialhefte13 (1999)

  57. Sánchez-Quinto, F. et al. Genomic affinities of two 7,000-year-old Iberian hunter-gatherers.Curr. Biol.22, 1494–1499 (2012)

    Article PubMed CAS  Google Scholar 

  58. Reimer, P. J. et al. IntCal13 and marine13 radiocarbon age calibration curves 0–50,000 years cal bp.Radiocarbon55, 1869–1887 (2013)

    Article CAS  Google Scholar 

  59. Ramsey, C. B. & Lee, S. Recent and planned developments of the program OxCal.Radiocarbon55, 720–730 (2013)

    Article CAS  Google Scholar 

  60. Enattah, N. S. et al. Identification of a variant associated with adult-type hypolactasia.Nature Genet.30, 233–237 (2002)

    Article CAS PubMed  Google Scholar 

  61. Bersaglieri, T. et al. Genetic signatures of strong recent positive selection at the lactase gene.Am. J. Hum. Genet.74, 1111–1120 (2004)

    Article CAS PubMed PubMed Central  Google Scholar 

  62. Fujimoto, A. et al. A scan for genetic determinants of human hair morphology:EDAR is associated with Asian hair thickness.Hum. Mol. Genet.17, 835–843 (2008)

    Article CAS PubMed  Google Scholar 

  63. Kimura, R. et al. A common variation inEDAR is a genetic determinant of shovel-shaped incisors.Am. J. Hum. Genet.85, 528–535 (2009)

    Article CAS PubMed PubMed Central  Google Scholar 

  64. Sturm, R. A. et al. A single SNP in an evolutionary conserved region within intron 86 of theHERC2 gene determines human blue-brown eye color.Am. J. Hum. Genet.82, 424–431 (2008)

    Article CAS PubMed PubMed Central  Google Scholar 

  65. Eiberg, H. et al. Blue eye color in humans may be caused by a perfectly associated founder mutation in a regulatory element located within theHERC2 gene inhibitingOCA2 expression.Hum. Genet.123, 177–187 (2008)

    Article CAS PubMed  Google Scholar 

Download references

Acknowledgements

We thank B. Alex, D. Meltzer, P. Moorjani, I. Olalde, S. Sankararaman and B. Viola for comments, K. Stewardson and E. Harney for sample screening, and F. Hallgren for sharing a radiocarbon date forMotala12. TheFig. 1 map is plotted using data available under the Open Database License © OpenStreetMap (http://www.openstreetmap.org/copyright). The Goyet project led by H.R. was funded by the Wenner-Gren Foundation (Gr. 7837), the College of Social and Behavioral Sciences of CSUN, the CSUN Competition for Research, Scholarship and Creative Activity Awards, and the RBINS. The excavation of the El Mirón Cave burial, led by L.G.S. and M.R.G.M., was supported by the Gobierno de Cantabria, the L.S.B. Leakey Foundation, the University of New Mexico, the Stone Age Research Fund (J. and R. Auel, principal donors), the town of Ramales de la Victoria and the Universidad de Cantabria. Excavations at Grotta Paglicci were performed by A. Palma di Cesnola in collaboration with the Soprintendenza Archeologia della Puglia (founded by MIUR and local Institutions). Research at Riparo Villabruna was supported by MIBACT and the Veneto Region. Q.F. was funded by the Special Foundation of the President of the Chinese Academy of Sciences (2015–2016), the Bureau of International Cooperation of the Chinese Academy of Sciences, the Chinese Academy of Sciences (XDA05130202), the National Natural Science Foundation of China (L1524016) and the Chinese Academy of Sciences Discipline Development Strategy Project (2015-DX-C-03). D.Fe was supported by an Irish Research Council grant (GOIPG/2013/36). I.M. was supported by a long-term fellowship from the Human Frontier Science Program LT001095/2014-L. P.Sk was supported by the Swedish Research Council (VR 2014-453). S.T., and M.P.R. were funded by the Max Planck Society. C.N.-M. was funded by FWF P-17258, P-19347, P-21660 and P-23612. S.C. and O.T.M. were funded by a ‘Karsthives’ Grant PCCE 31/2010 (CNCS-UEFISCDI, Romania). A.P.D., N.D., V.Sla and N.D. were funded by the Russian Science Foundation (project No.14-50-00036). M.A.M. was funded by a Marie Curie Intra-European Fellowship within the 7th European Community Framework Programme (grant number PIEF-GA-2008-219965). M.La and D.C. were funded by grants PRIN 2010-11 and 2010EL8TXP_003. C.C. and the research about the French Jura sites of Rochedane, Rigney and Ranchot was funded by the Collective Research Program (PCR) (2005-2008). K.H. was supported by the European Research Council (ERC StG 283503) and the Deutsche Forschungsgemeinschaft (DFG INST37/706-1FUGG, DFG FOR2237). D.G.D. was funded by the European Social Fund and Ministry of Science, Research and Arts of Baden-Württemberg. R.P. was funded by ERC starting grant ADNABIOARC (263441). J.Ke was funded by a grant from the Deutsche Forschungsgemeinschaft (SFB1052, project A02). J.Kr was funded by DFG grant KR 4015/1-1, the Baden Württemberg Foundation, and the Max Planck Society. S.P. were funded by the Max Planck Society and the Krekeler Foundation. D.R. was funded by NSF HOMINID grant BCS-1032255, NIH (NIGMS) grant GM100233, and the Howard Hughes Medical Institute.

Author information

Author notes
  1. Cosimo Posth and Mateja Hajdinjak: These authors contributed equally to this work.

  2. Johannes Krause, Svante Pääbo and David Reich: These authors jointly supervised this work.

Authors and Affiliations

  1. Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, IVPP, CAS, Beijing, 100044, China

    Qiaomei Fu

  2. Department of Genetics, Harvard Medical School, Boston, 02115, Massachusetts, USA

    Qiaomei Fu, Swapan Mallick, Nadin Rohland, Iosif Lazaridis, Mark Lipson, Iain Mathieson, Pontus Skoglund & David Reich

  3. Department of Evolutionary Genetics, Max Planck Institute for Evolutionary, Anthropology, 04103, Leipzig, Germany

    Qiaomei Fu, Mateja Hajdinjak, Martin Petr, Matthias Meyer, Birgit Nickel, Viviane Slon, Janet Kelso & Svante Pääbo

  4. Institute for Archaeological Sciences, Archaeo- and Palaeogenetics, University of Tübingen, Tübingen, 72070, Germany

    Cosimo Posth, Anja Furtwängler, Alissa Mittnik, Alexander Peltzer & Johannes Krause

  5. Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, 07745, Germany

    Cosimo Posth, Wolfgang Haak, Alissa Mittnik, Stephan Schiffels & Johannes Krause

  6. Broad Institute of MIT and Harvard, Cambridge, Massachusetts, 02142, USA

    Swapan Mallick, Nick Patterson & David Reich

  7. Howard Hughes Medical Institute, Harvard Medical School, Boston, 02115, Massachusetts, USA

    Swapan Mallick & David Reich

  8. School of Archaeology and Earth Institute, University College Dublin, Belfield, 4, Dublin, Ireland

    Daniel Fernandes & Ron Pinhasi

  9. Department of Life Sciences, CIAS, University of Coimbra, Coimbra, 3000-456, Portugal

    Daniel Fernandes

  10. Australian Centre for Ancient DNA, School of Biological Sciences, The University of Adelaide, Adelaide, SA-5005, Australia

    Wolfgang Haak

  11. Department of Human Evolution, Max Planck Institute for Evolutionary, Anthropology, 04103, Leipzig, Germany

    Sahra Talamo, Stefano Benazzi, Marcello A. Mannino & Michael P. Richards

  12. Institute of Archaeology and Ethnography, Russian Academy of Sciences, Siberian Branch, 17, Novosibirsk, RU-630090, Russia

    Anatoly P. Derevianko, Nikolai Drozdov, Vyacheslav Slavinsky & Alexander Tsybankov

  13. Altai State University, Barnaul, RU-656049, Russia

    Anatoly P. Derevianko

  14. Dipartimento di Civiltà e Forme del Sapere, Università di Pisa, Pisa, 56126, Italy

    Renata Grifoni Cremonesi

  15. Department of Biology, University of Pisa, Pisa, 56126, Italy

    Francesco Mallegni

  16. Direction régionale des affaires culturelles Rhône-Alpes, Lyon, 69283, Cedex 01, France

    Bernard Gély

  17. Dipartimento di Biologia, Università degli Studi di Bari ‘Aldo Moro’, Bari, 70125, Italy

    Eligio Vacca

  18. Instituto Internacional de Investigaciones Prehistóricas, Universidad de Cantabria, Santander, 39005, Spain

    Manuel R. González Morales & Lawrence G. Straus

  19. Department of Anthropology, MSC01 1040, University of New Mexico, Albuquerque, 87131-0001, New Mexico, USA

    Lawrence G. Straus

  20. Quaternary Archaeology, Institute for Oriental and European Archaeology, Austrian Academy of Sciences, Vienna, 1010, Austria

    Christine Neugebauer-Maresch

  21. Department of Anthropology, Natural History Museum Vienna, Vienna, 1010, Austria

    Maria Teschler-Nicola

  22. Department of Anthropology, University of Vienna, Vienna, 1090, Austria

    Maria Teschler-Nicola

  23. “Emil Racoviţă” Institute of Speleology, Bucharest 12, 010986, Romania

    Silviu Constantin

  24. “Emil Racoviţă” Institute of Speleology, Cluj Branch, Cluj, 400006, Romania

    Oana Teodora Moldovan

  25. Department of Cultural Heritage, University of Bologna, Ravenna, 48121, Italy

    Stefano Benazzi

  26. Dipartimento di Studi Umanistici, Sezione di Scienze Preistoriche e Antropologiche, Università di Ferrara, Ferrara, 44100, Italy

    Marco Peresani

  27. Università degli Studi di Bari ‘Aldo Moro’, Bari, 70125, Italy

    Donato Coppola

  28. Museo di “Civiltà preclassiche della Murgia meridionale”, Ostuni, 72017, Italy

    Donato Coppola

  29. Dipartimento di Biologia, Università di Firenze, Florence, 50122, Italy

    Martina Lari & David Caramelli

  30. Dipartimento di Scienze Fisiche, della Terra e dell’Ambiente, U.R. Preistoria e Antropologia, Università degli Studi di Siena, Siena, 53100, Italy

    Stefano Ricci & Annamaria Ronchitelli

  31. CNRS/UMR, 7041 ArScAn MAE, Nanterre, 92023, France

    Frédérique Valentin

  32. INRAP/UMR, 8215 Trajectoires 21, Nanterre, 92023, France

    Corinne Thevenet

  33. Ulmer Museum, Ulm, 89073, Germany

    Kurt Wehrberger

  34. Department of Geology, University of Bucharest, Faculty of Geology and Geophysics, Bucharest, 01041, Romania

    Dan Grigorescu

  35. Department of Anthropology, California State University Northridge, Northridge, 91330-8244, California, USA

    Hélène Rougier

  36. Université de Bordeaux, CNRS, UMR 5199-PACEA, Pessac Cedex, 33615, France

    Isabelle Crevecoeur

  37. TRACES – UMR 5608, Université Toulouse Jean Jaurès, Maison de la Recherche, Toulouse, 31058, Cedex 9, France

    Damien Flas

  38. Royal Belgian Institute of Natural Sciences, Brussels, 1000, Belgium

    Patrick Semal

  39. Department of Archaeology, School of Culture and Society, Aarhus University, Højbjerg, 8270, Denmark

    Marcello A. Mannino

  40. Service Régional d’Archéologie de Franche-Comté, Besançon, 25043, Cedex, France

    Christophe Cupillard

  41. Laboratoire Chronoenvironnement, UMR 6249 du CNRS, UFR des Sciences et Techniques, Besançon, 25030, Cedex, France

    Christophe Cupillard

  42. Department of Geosciences, Biogeology, University of Tübingen, Tübingen, 72074, Germany

    Hervé Bocherens & Dorothée G. Drucker

  43. Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tübingen, Tübingen, 72072, Germany

    Hervé Bocherens, Nicholas J. Conard, Katerina Harvati & Johannes Krause

  44. Department of Early Prehistory and Quaternary Ecology, University of Tübingen, Tübingen, 72070, Germany

    Nicholas J. Conard

  45. Institute for Archaeological Sciences, Paleoanthropology, University of Tübingen, Tübingen, 72070, Germany

    Katerina Harvati

  46. Museum of Anthropology and Ethnography, Saint Petersburg, 34, Russia

    Vyacheslav Moiseyev

  47. Department of Anthropology, Faculty of Science, Masaryk University, Brno, 611 37, Czech Republic

    Jiří Svoboda

  48. Institute of Archaeology at Brno, Academy of Science of the Czech Republic, Dolní Vĕstonice, 69129, Czech Republic

    Jiří Svoboda

  49. Department of Archaeology, Simon Fraser University, Burnaby, V5A 1S6, British Columbia, Canada

    Michael P. Richards

Authors
  1. Qiaomei Fu

    You can also search for this author inPubMed Google Scholar

  2. Cosimo Posth

    You can also search for this author inPubMed Google Scholar

  3. Mateja Hajdinjak

    You can also search for this author inPubMed Google Scholar

  4. Martin Petr

    You can also search for this author inPubMed Google Scholar

  5. Swapan Mallick

    You can also search for this author inPubMed Google Scholar

  6. Daniel Fernandes

    You can also search for this author inPubMed Google Scholar

  7. Anja Furtwängler

    You can also search for this author inPubMed Google Scholar

  8. Wolfgang Haak

    You can also search for this author inPubMed Google Scholar

  9. Matthias Meyer

    You can also search for this author inPubMed Google Scholar

  10. Alissa Mittnik

    You can also search for this author inPubMed Google Scholar

  11. Birgit Nickel

    You can also search for this author inPubMed Google Scholar

  12. Alexander Peltzer

    You can also search for this author inPubMed Google Scholar

  13. Nadin Rohland

    You can also search for this author inPubMed Google Scholar

  14. Viviane Slon

    You can also search for this author inPubMed Google Scholar

  15. Sahra Talamo

    You can also search for this author inPubMed Google Scholar

  16. Iosif Lazaridis

    You can also search for this author inPubMed Google Scholar

  17. Mark Lipson

    You can also search for this author inPubMed Google Scholar

  18. Iain Mathieson

    You can also search for this author inPubMed Google Scholar

  19. Stephan Schiffels

    You can also search for this author inPubMed Google Scholar

  20. Pontus Skoglund

    You can also search for this author inPubMed Google Scholar

  21. Anatoly P. Derevianko

    You can also search for this author inPubMed Google Scholar

  22. Nikolai Drozdov

    You can also search for this author inPubMed Google Scholar

  23. Vyacheslav Slavinsky

    You can also search for this author inPubMed Google Scholar

  24. Alexander Tsybankov

    You can also search for this author inPubMed Google Scholar

  25. Renata Grifoni Cremonesi

    You can also search for this author inPubMed Google Scholar

  26. Francesco Mallegni

    You can also search for this author inPubMed Google Scholar

  27. Bernard Gély

    You can also search for this author inPubMed Google Scholar

  28. Eligio Vacca

    You can also search for this author inPubMed Google Scholar

  29. Manuel R. González Morales

    You can also search for this author inPubMed Google Scholar

  30. Lawrence G. Straus

    You can also search for this author inPubMed Google Scholar

  31. Christine Neugebauer-Maresch

    You can also search for this author inPubMed Google Scholar

  32. Maria Teschler-Nicola

    You can also search for this author inPubMed Google Scholar

  33. Silviu Constantin

    You can also search for this author inPubMed Google Scholar

  34. Oana Teodora Moldovan

    You can also search for this author inPubMed Google Scholar

  35. Stefano Benazzi

    You can also search for this author inPubMed Google Scholar

  36. Marco Peresani

    You can also search for this author inPubMed Google Scholar

  37. Donato Coppola

    You can also search for this author inPubMed Google Scholar

  38. Martina Lari

    You can also search for this author inPubMed Google Scholar

  39. Stefano Ricci

    You can also search for this author inPubMed Google Scholar

  40. Annamaria Ronchitelli

    You can also search for this author inPubMed Google Scholar

  41. Frédérique Valentin

    You can also search for this author inPubMed Google Scholar

  42. Corinne Thevenet

    You can also search for this author inPubMed Google Scholar

  43. Kurt Wehrberger

    You can also search for this author inPubMed Google Scholar

  44. Dan Grigorescu

    You can also search for this author inPubMed Google Scholar

  45. Hélène Rougier

    You can also search for this author inPubMed Google Scholar

  46. Isabelle Crevecoeur

    You can also search for this author inPubMed Google Scholar

  47. Damien Flas

    You can also search for this author inPubMed Google Scholar

  48. Patrick Semal

    You can also search for this author inPubMed Google Scholar

  49. Marcello A. Mannino

    You can also search for this author inPubMed Google Scholar

  50. Christophe Cupillard

    You can also search for this author inPubMed Google Scholar

  51. Hervé Bocherens

    You can also search for this author inPubMed Google Scholar

  52. Nicholas J. Conard

    You can also search for this author inPubMed Google Scholar

  53. Katerina Harvati

    You can also search for this author inPubMed Google Scholar

  54. Vyacheslav Moiseyev

    You can also search for this author inPubMed Google Scholar

  55. Dorothée G. Drucker

    You can also search for this author inPubMed Google Scholar

  56. Jiří Svoboda

    You can also search for this author inPubMed Google Scholar

  57. Michael P. Richards

    You can also search for this author inPubMed Google Scholar

  58. David Caramelli

    You can also search for this author inPubMed Google Scholar

  59. Ron Pinhasi

    You can also search for this author inPubMed Google Scholar

  60. Janet Kelso

    You can also search for this author inPubMed Google Scholar

  61. Nick Patterson

    You can also search for this author inPubMed Google Scholar

  62. Johannes Krause

    You can also search for this author inPubMed Google Scholar

  63. Svante Pääbo

    You can also search for this author inPubMed Google Scholar

  64. David Reich

    You can also search for this author inPubMed Google Scholar

Contributions

J.Kr, S.P. and D.R. conceived the idea for the study. Q.F., C.P., M.H., W.H., M.Me, V.Slo, R.G.C., A.P.D., N.D., V.Sla, A.T., F.M., B.G., E.V., M.R.G.M., L.G.S., C.N.-M., M.T.-N., S.C., O.T.M., S.B., M.Per, D.Co, M.La, S.R., A.R., F.V., C.T., K.W., D.G., H.R., I.C., D.Fl, P.Se, M.A.M., C.C., H.B., N.J.C., K.H., V.M., D.G.D., J.S., D.Ca, R.P., J.Kr, S.P. and D.R. assembled archaeological material. Q.F., C.P., M.H., D.Fe, A.F., W.H., M.Me, A.M., B.N., N.R., V.Slo, S.T., H.B., D.G.D., M.P.R., R.P., J.Kr, S.P. and D.R. performed or supervised wet laboratory work. Q.F., C.P., M.H., M.Pet, S.M., A.P., I.L., M.Li, I.M., S.S., P.Sk, J.Ke, N.P. and D.R. analysed data. Q.F., C.P., M.H., M.Pet, J.Ke, S.P. and D.R. wrote the manuscript and supplements.

Corresponding author

Correspondence toDavid Reich.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reviewer InformationNature thanks C. Lalueza-Fox and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Extended data figures and tables

Extended Data Figure 1 A decrease in Neanderthal ancestry in the last 45,000 years.

This is similar toFig. 2, except we use ancestry estimates from rates of alleles matching to Neanderthal rather thanf4-ratios, as described inSupplementary Information section 3. The least-squares fit excludesOase1 (as an outlier with recent Neanderthal ancestry) and Europeans (known to have reduced Neanderthal ancestry). The regression slope is significantly negative (P = 0.00004,Extended Data Table 3).

Extended Data Figure 2 Heat matrix of pairwisef3(X,Y; Mbuti) for selected ancient individuals.

Only individuals with at least 30,000 SNPs covered at least once are analysed.

Extended Data Figure 3 Studying how the relatedness of non-European populations to pairs of European hunter-gatherers changes over time.

Statistics were examined of the formD(W, X; Y, Mbuti), with theZ-score given on they axis, whereW is an early European hunter-gatherer,X is another European hunter-gatherer (in chronological order on thex axis), andY is a non-European population (see legend).a,W = Kostenki14.b,W = GoyetQ116-1.c,W = Vestonice16.d,W = ElMiron. |Z| > 3 scores are considered statistically significant (horizontal line). The similarFig. 4b gives absoluteD-statistic values rather thanZ-scores (for W = Kostenki14) and uses pooled regions rather than individual populationsY.

Extended Data Figure 4 Three admixture graph models that fit the data forSatsurblia, an Upper Palaeolithic individual from the Caucasus.

These models use 127,057 SNPs covered in all populations. Estimated genetic drifts are given along the solid lines in units off2-distance (parts per thousand), and estimated mixture proportions are given along the dotted lines. All three models provide a fit to the allele frequency correlation data amongMbuti,Ust’-Ishim,Kostenki14,Vestonice16,Malta1,ElMiron andSatsurblia to within the limits of our resolution, in the sense that all empiricalf2-,f3- andf4-statistics relating the individuals are within three standard errors of the expectation of the model. Models in whichSatsurblia is treated as unadmixed cannot be fit.

Extended Data Table 1 The 51 ancient modern humans analysed in this study
Extended Data Table 2 Estimated proportion of Neanderthal ancestry
Extended Data Table 3 Significant correlation of Neanderthal ancestry estimate with specimen age
Extended Data Table 4 Sex determination for newly reported individuals
Extended Data Table 5 Allele counts at SNPs affected by selection in individuals with >1-fold coverage
Extended Data Table 6 All European hunter-gatherers beginning withKostenki14 share genetic drift with present-day Europeans

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data, Supplementary Tables, Supplementary Figures and additional references (see Contents for more details). (PDF 8052 kb)

Rights and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, Q., Posth, C., Hajdinjak, M.et al. The genetic history of Ice Age Europe.Nature534, 200–205 (2016). https://doi.org/10.1038/nature17993

Download citation

This article is cited by

Access through your institution
Buy or subscribe

Editorial Summary

Eurasian humans of the Upper Paleolithic

David Reich, Svante Pääbo and colleagues analyse ancient genomic data from 51 Eurasian humans who lived between 45,000 and 7,000 years ago. The data provide the most comprehensive view to date of the population history of pre-Neolithic Europe, and provide support for recurring migration and population turnover in European populations during this period. Neanderthal ancestry has reduced during the past 45,000 years from 3–6% to the present day value of around 2%.

Associated content

Collection

Nobel Prize in Physiology or Medicine 2022

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp