Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature
  • Article
  • Published:

Stromatolite reef from the Early Archaean era of Australia

Naturevolume 441pages714–718 (2006)Cite this article

Abstract

The 3,430-million-year-old Strelley Pool Chert (SPC) (Pilbara Craton, Australia) is a sedimentary rock formation containing laminated structures of probable biological origin (stromatolites). Determining the biogenicity of such ancient fossils is the subject of ongoing debate. However, many obstacles to interpretation of the fossils are overcome in the SPC because of the broad extent, excellent preservation and morphological variety of its stromatolitic outcrops—which provide comprehensive palaeontological information on a scale exceeding other rocks of such age. Here we present a multi-kilometre-scale palaeontological and palaeoenvironmental study of the SPC, in which we identify seven stromatolite morphotypes—many previously undiscovered—in different parts of a peritidal carbonate platform. We undertake the first morphotype-specific analysis of the structures within their palaeoenvironment and refute contemporary abiogenic hypotheses for their formation. Finally, we argue that the diversity, complexity and environmental associations of the stromatolites describe patterns that—in similar settings throughout Earth's history—reflect the presence of organisms.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1:Stromatolite facies of the Strelley Pool Chert, showing reconstructed three-dimensional views and outcrop photographs.

Similar content being viewed by others

References

  1. Lowe, D. R. Stromatolites 3,400 Myr old from the Archean of Western Australia.Nature284, 441–443 (1980)

    Article ADS  Google Scholar 

  2. Lowe, D. R. Restricted shallow water sedimentation of Early Archean stromatolitic and evaporitic strata of the Strelley Pool Chert, Pilbara Block, Western Australia.Precambr. Res.19, 239–283 (1983)

    Article ADS  Google Scholar 

  3. Lowe, D. R. Abiotic origin of described stromatolites older than 3.2 Ga.Geology22, 387–390 (1994)

    Article ADS CAS  Google Scholar 

  4. Hofmann, H. J., Grey, K., Hickman, A. H. & Thorpe, R. I. Origin of 3.45 Ga coniform stromatolites in Warrawoona Group, Western Australia.Geol. Soc. Am. Bull.111, 1256–1262 (1999)

    Article ADS  Google Scholar 

  5. Lindsay, J. F. et al. The problem of deep carbon—an Archean paradox.Precambr. Res.143, 1–22 (2005)

    Article ADS CAS  Google Scholar 

  6. Van Kranendonk, M. J., Webb, G. E. & Kamber, B. S. Geological and trace element evidence for a marine sedimentary environment of deposition and biogenicity of 3.45 Ga stromatolitic carbonates in the Pilbara Craton, and support for a reducing Archaean ocean.Geobiology1, 91–108 (2003)

    Article CAS  Google Scholar 

  7. Grotzinger, J. P. & Rothman, D. H. An abiotic model for stromatolite morphogenesis.Nature383, 423–425 (1996)

    Article ADS CAS  Google Scholar 

  8. Grotzinger, J. P. & Knoll, A. Stromatolites in Precambrian carbonates; evolutionary mileposts or environmental dipsticks?Annu. Rev. Earth Planet. Sci.27, 313–358 (1999)

    Article ADS CAS  Google Scholar 

  9. Awramik, S. M., Margulis, L. & Barghoorn, E. S. inStromatolites (ed. Walter, M. R.) 149–162 (Elsevier, Amsterdam, 1976)

    Book  Google Scholar 

  10. Van Kranendonk, M. J., Hickman, A. H., Smithies, R. H. & Nelson, D. R. Origin and evolution of the Archean North Pilbara Terrain, Pilbara Craton, Western Australia.Econ. Geol.97, 605–732 (2002)

    Google Scholar 

  11. Van Kranendonk, M. J. & Pirajno, F. Geochemistry of metabasalts and hydrothermal alteration zones associated with c. 3.45 Ga chert and barite deposits; implications for the geological setting of the Warrawoona Group, Pilbara Craton, Australia.Geochem. Exp. Environ. Anal.4, 253–278 (2004)

    Article CAS  Google Scholar 

  12. Knight, J. Processes of soft-sediment clast formation in the intertidal zone.Sedim. Geol.181, 207–214 (2005)

    Article ADS  Google Scholar 

  13. Flugel, E.Microfacies of Carbonate Rocks (Springer, Berlin, 2004)

    Book  Google Scholar 

  14. Bachelor, M. T., Burne, R. V., Henry, B. I. & Watt, S. D. Deterministic KPZ model for stromatolite laminae.Physica A (Amsterdam)282, 123–136 (2000)

    Article ADS  Google Scholar 

  15. Jogi, P. M. & Runnegar, B. Quantitative methods for evaluating the biogenicity of fossil stromatolites.Astrobiology5, 293 (2005)

    Google Scholar 

  16. Pope, M. & Grotzinger, J. P. inCarbonate Sedimentation and Diagenesis in the Evolving Precambrian World (eds Grotzinger, J. P. & James, N. P.) 103–122 (SEPM (Soc. Sedim. Geol.) Spec. Publ. 67, Tulsa, Oklahoma, 2000)

    Book  Google Scholar 

  17. Walter, M. R., Bauld, J. & Brock, T. D. inStromatolites (ed. Walter, M. R.) 273–310 (Elsevier Science, Amsterdam, 1976)

    Book  Google Scholar 

  18. Webb, G. E. & Kamber, B. S. Rare earth elements in Holocene reefal microbialites: a new shallow seawater proxy.Geochim. Cosmochim. Acta64, 1557–1565 (2000)

    Article ADS CAS  Google Scholar 

  19. Kamber, B. S. & Webb, G. E. The geochemistry of late Archaean microbial carbonate: implications for ocean chemistry and continental erosion history.Geochim. Cosmochim. Acta65, 2509–2525 (2001)

    Article ADS CAS  Google Scholar 

  20. Nothdurft, L. D., Webb, G. E. & Kamber, B. S. Rare earth element geochemistry of Late Devonian reefal carbonates, Canning basin, Western Australia: confirmation of a seawater REE proxy in ancient limestones.Geochim. Cosmochim. Acta68, 263–283 (2004)

    Article ADS CAS  Google Scholar 

  21. Komar, V. P., Raaben, M. E. & Semikhatov, M. A. Conophytons in the Riphean of the USSR and their stratigraphic significance. [in Russian]Trans. Geol. Inst. Akad. Nauk. SSSR131, 1–73 (1965)

    Google Scholar 

  22. Komar, V. A. Columnar stromatolites from the north of the Siberian Platform. [in Russian]Uch. Zap. Nauchno-Issled. Inst. Arjt. Paleontol. Biostratigr.6, 84–105 (1964)

    Google Scholar 

  23. Golovanov, N. P.Opornyy razrez verkhnedokembriyskikh otlozheniy zapadnoggo sklona of Anabarskogo podnyatiya (Sbornik Statey) 60–89 (Nauchno-Issled. Inst. Geol. Arkt., Leningrad, 1970)

    Google Scholar 

  24. Korolyuk, I. K. Stromatolites of the Lower Cambrian and Proterozoic of the Irkutsk Ampitheatre. [in Russian]Trans. Inst. Geol. Razrab Goryuchikh Iskop. Akad. Nauk SSSR (Moscow)1, 112–167 (1960)

    Google Scholar 

  25. Vlasov, F. Ya. inMaterials on the Middle Palaeozoic Palaeontology of the Urals and Siberia [in Russian] 101–124 (Ural. Sci. Centre Akad. Nauk SSSR, Sverdlovsk, 1977)

    Google Scholar 

  26. Banerjee, N. R., Furnes, H., Muelenbachs, K., Staudigel, H. & DeWit, M. Preservation of3.4–3.5 Ga microbial biomarkers in pillow lavas and hyaloclastites from the Barberton Greenstone Belt, South Africa.Earth Planet. Sci. Lett.241, 707–722 (2006)

    Article ADS CAS  Google Scholar 

  27. Corliss, J. B. et al. An hypothesis concerning the relationship between submarine hot springs and the origin of life on Earth.Oceanol. Acta4, 59–69 (1981)

    Google Scholar 

Download references

Acknowledgements

We thank M. Van Kranendonk, S. Awramik and K. Grey for discussion and reviews; A. Grieg for assistance with REE analyses; the Geological Survey of Western Australia (GSWA) and the Pilbara Regiment for field support; and the NSW Dept of Commerce Heritage Restoration Services for large sample cutting. Research was supported by Macquarie University and the M.U. Biotechnology Research Institute. A.C.A. was supported by an Australian Postgraduate Award. All samples were collected with GSWA permission. Author Contributions A.C.A. undertook the study and wrote the paper with supervision from M.R.W. and C.P.M. I.W.B. gave field assistance, and research and writing assistance. B.K. supervised and assisted with REE analyses.

Author information

Authors and Affiliations

  1. Australian Centre for Astrobiology/Macquarie University Biotechnology Research Institute,

    Abigail C. Allwood, Malcolm R. Walter & Craig P. Marshall

  2. Department of Earth and Planetary Sciences, Macquarie University, Herring Road, New South Wales, 2109, Sydney, Australia

    Abigail C. Allwood, Malcolm R. Walter & Ian W. Burch

  3. Department of Earth Sciences, Laurentian University, 933 Ramsey Lake Road, Ontario, P3E 6B5, Sudbury, Canada

    Balz S. Kamber

  4. Vibrational Spectroscopy Facility, School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia

    Craig P. Marshall

Authors
  1. Abigail C. Allwood

    You can also search for this author inPubMed Google Scholar

  2. Malcolm R. Walter

    You can also search for this author inPubMed Google Scholar

  3. Balz S. Kamber

    You can also search for this author inPubMed Google Scholar

  4. Craig P. Marshall

    You can also search for this author inPubMed Google Scholar

  5. Ian W. Burch

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toAbigail C. Allwood.

Ethics declarations

Competing interests

Reprints and permissions information is available atnpg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Notes

This file contains Supplementary Data and Supplementary Discussion. (PDF 86 kb)

Supplementary Figures

This file contains Supplementary Figures 1–22. (PDF 3520 kb)

Supplementary Tables

This file contains Supplementary Tables 1–9. (PDF 128 kb)

Rights and permissions

About this article

Cite this article

Allwood, A., Walter, M., Kamber, B.et al. Stromatolite reef from the Early Archaean era of Australia.Nature441, 714–718 (2006). https://doi.org/10.1038/nature04764

Download citation

Access through your institution
Buy or subscribe

Editorial Summary

Biodiversity rocks

The existence — or otherwise — of life on Earth in the Archaean eon (prior to 2,500 million years ago) has been a matter of heated debate. Much of this centres on whether layered sedimentary structures called stromatolites reflect the activities of colonial microorganisms, as is the case today, or betray some non-biological process. The case for life is boosted by a new analysis of a remarkable 10-km-long rocky outcrop in Western Australia. The stromatolites here are around 3,430 million years old, and display characteristics similar to those found in younger microbial reefs: this is not a series of isolated fossils — more like an entire ecosystem in fossil form. Life not only existed way back then, it seems, but it was thriving. The cover image shows a conical stromatolite from the reef outcrop: no scale bar, but the shades peering from beneath theNature logo indicate size.

Associated content

Respect for stromatolites

  • Stanley M. Awramik
NatureNews & Views

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp