Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Springer Nature Link
Log in

The loss of sex in clonal plants

  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

Most plants combine sexual and clonal reproduction, and the balance between the two may vary widely between and within species. There are many anecdotal reports of plants that appear to have abandoned sex for clonal reproduction, yet few studies have quantified the degree of sexual variation in clonal plants and fewer still have determined the underlying ecological and/or genetic factors. Recent empirical work has shown that some clonal plants exhibit very wide variation in sexual reproduction that translates into striking variation in genotypic diversity and differentiation of natural populations. Reduced sexual reproduction may be particularly common at the geographical margins of species' ranges. Although seed production and sexual recruitment may often be limited by biotic and abiotic aspects of the environment in marginal populations, genetic factors, including changes in ploidy and sterility mutations, may also play a significant role in causing reduced sexual fertility. Moreover, environmental suppression of sexual recruitment may facilitate the evolution of genetic sterility because natural selection no longer strongly maintains the many traits involved in sex. In addition to the accumulation of ‘neutral’ sterility mutations in highly clonal populations, the evolution of genetic infertility may be facilitated if sterility is associated with enhanced vegetative growth, clonal propagation or survival through either resource reallocation or pleiotropy. However, there are almost no experimental data with which to distinguish among these possibilities. Ultimately, wide variation in genotypic diversity and gene flow associated with the loss of sex may constrain local adaptation and the evolution of the geographical range limit in clonal plants.

This is a preview of subscription content,log in via an institution to check access.

Access this article

Log in via an institution

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrahamson, W.G. (1980) Demography and vegetative reproduction. In O.T. Solbrig (ed.)Demography and Evolution in Plant Populations. Blackwell, Oxford, UK, pp. 89-106.

    Google Scholar 

  • Ashton, P.J. and Mitchell, D.S. (1989) Aquatic plants: Patterns and modes of invasion, attributes of invading species and assessment of control programs. In J.A. Drake, H.A. Mooney, F. Di Castri, R.H. Groves, F.J. Kruger, M. Rejmánek and M.H. Williamson (eds)Biological Invasions: A Global Perspective. John Wiley & Sons Ltd., London, UK, pp. 111-154.

    Google Scholar 

  • Aspinwall, N. and Christian, T. (1992) Clonal structure, genotypic diversity, and seed production in populations ofFilipendula rubra (Rosaceae) from the northcentral United States.Amer. J. Bot.79, 294-299.

    Google Scholar 

  • Baker, H.G. (1965) Characteristics and modes of origins of weeds. In H.G. Baker and G.L. Stebbins (eds)The Genetics of Colonizing Species. Academic Press, New York, NY, USA, pp. 147-172.

    Google Scholar 

  • Barrett, S.C.H. (1980a) Sexual reproduction inEichhornia crassipes (water hyacinth). II. Seed production in natural populations.J. Appl. Ecol.17, 113-124.

    Google Scholar 

  • Barrett, S.C.H. (1980b) Sexual reproduction inEichhornia crassipes (water hyacinth). I. Fertility of clones from diverse regions.J. Appl. Ecol.17, 101-112.

    Google Scholar 

  • Barrett, S.C.H., Eckert, C.G. and Husband, B.C. (1993) Evolutionary processes in aquatic plants.Aquatic Bot.44, 105-145.

    Google Scholar 

  • Bhardwaj, M. and Eckert, C.G. (2001) Functional analysis of synchronous dichogamy in flowering rush,Butomus umbellatus (Butomaceae).Amer. J. Bot.88, 2204-2213.

    Google Scholar 

  • Bierzychudek, P. (1987) Patterns in plant parthenogenesis. In S.C. Stearns (ed.)The Evolution of Sex and its Consequences. Birkhäuser Verlag, Basel, Switzerland, pp. 197-217.

    Google Scholar 

  • Brace, C.L. (1963) Structural reduction in evolution.Amer. Nat.97, 39-49.

    Google Scholar 

  • Byers, D.L. and Meagher, T.R. (1992) Mate availability in small populations of plant species with homomorphic sporophytic self-incompatibility.Heredity68, 353-359.

    Google Scholar 

  • Case, T.J. and Taper, M.L. (2000) Interspecific competition, environmental gradients, gene flow, and the coevolution of species' borders.Amer. Nat.155, 583-605.

    Google Scholar 

  • Caughley, G., Grice, D., Barker, R. and Brown, B. (1988) The edge of the range.J. Anim. Ecol.57, 771-785.

    Google Scholar 

  • Charpentier, A., Grillas, P. and Thompson, J.D. (2000) The effect of population size limitation on fecundity in mosaic populations of the clonal macrophyteScirpus maritimus (Cyperaceae).Amer. J. Bot.87, 502-507.

    Google Scholar 

  • Culver, D.C. (1982)Cave Life: Evolution and Ecology. Harvard University Press, Cambridge, MA, USA.

    Google Scholar 

  • Dorken, M.E. and Eckert, C.G. (2001) Severely reduced sexual reproduction in northern populations of a clonal plant,Decodon verticillatus (Lythraceae).J. Ecol.89, 339-350.

    Google Scholar 

  • Eckert, C.G. (1999) Clonal plant research: proliferation, integration, but not much evolution.Amer. J. Bot.86, 1649-1654.

    Google Scholar 

  • Eckert, C.G. (2000) Contributions of autogamy and geitonogamy to self-fertilization in a mass-flowering, clonal plant.Ecology82, 532-542.

    Google Scholar 

  • Eckert, C.G. and Barrett, S.C.H. (1992) Stochastic loss of style morphs from populations of tristylousLythrum salicaria andDecodon verticillatus (Lythraceae).Evolution46, 1014-1029.

    Google Scholar 

  • Eckert, C.G. and Barrett, S.C.H. (1993) Patterns of genotypic diversity and clonal reproduction inDecodon verticillatus (Lythraceae).Amer. J. Bot.80, 1175-1182.

    Google Scholar 

  • Eckert, C.G. and Barrett, S.C.H. (1995) Style morph ratios in tristylousDecodon verticillatus (Lythraceae): selection versus historical contingency.Ecology76, 1051-1066.

    Google Scholar 

  • Eckert, C.G., Dorken, M.E. and Mitchell, S.A. (1999) Loss of sex in clonal populations of a flowering plant,Decodon verticillatus (Lythraceae).Evolution53, 1079-1092.

    Google Scholar 

  • Eckert, C.G., Manicacci, D. and Barrett, S.C.H. (1996) Genetic drift and founder effect in native versus introduced populations of an invading plant,Lythrum salicaria (Lythraceae).Evolution50, 1512-1519.

    Google Scholar 

  • Eckert, C.G., Massonnet, B. and Thomas, J.J. (2000) Variation in sexual and clonal reproduction among introduced populations of flowering rush,Butomus umbellatus (Butomaceae).Can. J. Bot.78, 437-446.

    Google Scholar 

  • Ellstrand, N.C. and Roose, K.L. (1987) Patterns of genotypic diversity in clonal plant species.Amer. J. Bot.74, 123-131.

    Google Scholar 

  • Emerson, A.E. (1961) Vestigial characters of termites and processes of regressive evolution.Evolution15, 115-131.

    Google Scholar 

  • Eriksson, O. (1989) Seedling dynamics and life histories in clonal plants.Oikos55, 231-238.

    Google Scholar 

  • Eriksson, O. (1992) Evolution of seed dispersal and recruitment in clonal plants.Oikos63, 439-448.

    Google Scholar 

  • Eriksson, O. (1996) Regional dynamics of plants: a review of evidence for remnant, source-sink and metapopulations.Oikos77, 248-258.

    Google Scholar 

  • Fong, D.W., Kane, T.C. and Culver, D.C. (1995) Vestigialization and loss of nonfunctional characters.Ann. Rev. Ecol. Syst.26, 249-268.

    Google Scholar 

  • Gliddon, C., Belhassen, E. and Gouyon, P.-H. (1987) Genetic neighbourhoods in plants with diverse systems of mating and different patterns of growth.Heredity59, 29-32.

    Google Scholar 

  • Haldane, J.B.S. (1933) The part played by recurrent mutation in evolution.Amer. Nat.67, 5-19.

    Google Scholar 

  • Hamrick, J.L. and Godt, M.J. (1990) Allozyme diversity in plant species. In A.H.D. Brown, M.T. Clegg, A.L. Kahler and B.S. Weir (eds)Plant Population Genetics, Breeding, and Genetic Resources. Sinauer, Sunderland, MA, USA, pp. 43-63.

    Google Scholar 

  • Harada, Y., Kawano, S. and Iwasa, Y. (1997) Probability of clonal identity: inferring the relative success of sexual versus clonal reproduction from spatial genetic patterns.J. Ecol.85, 591-600.

    Google Scholar 

  • Hebert, P.D.N., Ward, R.D. and Weider, L.J. (1988) Clonal-diversity patterns and breeding system variation inDaphnia pulex, an asexual-sexual complex.Evolution42, 147-159.

    Google Scholar 

  • Holt, R.D. and Keitt, T.H. (2000) Alternative causes for range limits: a metapopulation perspective.Ecology Letters3, 41-47.

    Google Scholar 

  • Hutchinson, G.E. (1975)A Treatise on Limnology. Volume III. Limnological Botany. John Wiley & Sons, New York, NY, USA.

    Google Scholar 

  • Kirkpatrick, M. and Barton, N.H. (1997) Evolution of a species' range.Amer. Nat.150, 1-23.

    Google Scholar 

  • Klekowski, E.J. Jr. (1988a)Mutation, Developmental Selection and Plant Evolution. Columbia University Press, New York, NY, USA.

    Google Scholar 

  • Klekowski, E.J. Jr. (1988b) Progressive cross-and self-sterility associated with aging in fern clones and perhaps other plants.Heredity61, 247-253.

    Google Scholar 

  • Klekowski, E.J. Jr. (1988c) Mechanisms that maintain the genetic integrity of plants. In W. Greuter and B. Zimmer (eds)Proceedings of the XIV International Botanical Congress. Königstein/Taunus, Koeltz, Germany, pp. 137-152.

  • Klekowski, E.J. Jr. (1997) Somatic mutation theory of clonality. In H. de Kroon and J. van Groenendael (eds)The Ecology and Evolution of Clonal Plants. Backhuys, Leiden, The Netherlands, pp. 227-241.

    Google Scholar 

  • Krahulcová, A. and Jarolímová, V. (1993) Ecology of two cytotypes ofButomus umbellatus I. Karyology and breeding.Folia Geobot. Phytotax.28, 385-411.

    Google Scholar 

  • Kudoh, H., Shibaike, H., Takasu, H., Whigham, D.F. and Kawano, S. (1999) Genet structure and determinants of clonal structure in a temperate deciduous woodland herb,Uvularia perfoliata.J. Ecol.87, 244-257.

    Google Scholar 

  • Les, D.H. (1991) Genetic diversity in the monoecious hydrophileCeratophyllum (Ceratophyllaceae).Amer. J. Bot.78, 1070-1082.

    Google Scholar 

  • Les, D.H. and Philbrick, C.T. (1993) Studies of hybridization and chromosome number variation in aquatic angiosperms: evolutionary implications.Aquat. Bot.44, 181-228.

    Google Scholar 

  • Levin, D.A. (1983) Polyploidy and novelty in flowering plants.Amer. Nat.122, 1-25.

    Google Scholar 

  • Lloyd, D.G. and Webb, C.J. (1986) The avoidance of interference between the presentation of pollen and stigmas in angiosperms. I. Dichogamy.N. Zeal. J. Bot.24, 135-162.

    Google Scholar 

  • Lynch, M. and Ritland, K. (1999) Estimation of pairwise relatedness with molecular markers.Genetics152, 1753-1766.

    Google Scholar 

  • Lynch, M. and Walsh, B. (1998)Genetics and Analysis of Quantitative Traits. Sinauer, Sunderland, MA, USA.

    Google Scholar 

  • Lynch, M., Bürger, R., Butcher, D. and Gabriel, W. (1993) The mutational meltdown in asexual populations.J. Hered.84, 339-344.

    Google Scholar 

  • McKee, J. and Richards, A.J. (1996) Variability in seed production and germinability in common reed (Phragmites australis) in Britain and France with respect to climate.New Phytol.133, 233-243.

    Google Scholar 

  • McLellan, A.J., Prati, D., Kaltz, O. and Schmid, B. (1997) Structure and analysis of phenotypic and genetic variation in clonal plants. In H. de Kroon and J. van Groencndael (eds)The Ecology and Evolution of Clonal Plants. Backhuys Publishers, Leiden, The Netherlands, pp. 185-210.

    Google Scholar 

  • Muirhead, C.A. and Lande, R. (1997) Inbreeding depression under joint selfing, outcrossing, and asexuality.Evolution51, 1409-1015.

    Google Scholar 

  • Muller, H.J. (1949) The Darwinian and modern conceptions of natural selection.Proc. Am. Philos. Soc.93, 459-470.

    Google Scholar 

  • Nakamura, T., Suzuki, T. and Kadono, Y. (1998) A comparative study of isoenzyme patterns ofHydrilla verticillata (L.f.) Royle in Japan.J. Plant Res.111, 581-585.

    Google Scholar 

  • O'Connell, L.M. and Eckert, C.G. (1999) Differentiation in sexuality among populations ofAntennaria parlinii (Asteraceae).Int. J. Pl. Sci.160, 567-575.

    Google Scholar 

  • Olivieri, I. and Gouyon, P. (1997) Evolution of migration rate and other traits. In I.A. Hanski and M.A. Gilpin (eds)Metapopulation Biology. Ecology, Genetics and Evolution. Academic Press, San Diego, CA, USA, pp. 293-323.

    Google Scholar 

  • Orive, M.E. (1993) Effective population size in organisms with complex life-histories.Theor. Pop. Biol.44, 316-340.

    Google Scholar 

  • Philbrick, C.T. and Les, D.H. (1996) Evolution of aquatic angiosperm reproductive systems.Bioscience46, 813-826.

    Google Scholar 

  • Pigott, C.D. (1981) Nature of seed sterility and natural regeneration ofTilia cordata at the northern limit in Finland.Ann. Bot. Fennici.18, 255-263.

    Google Scholar 

  • Pigott, C.D. and Huntley, J.P. (1981) Factors controlling the distribution ofTilia cordata at the northern limit of its geographical range. III. Nature and causes of seed sterility.New Phytol.87, 817-839.

    Google Scholar 

  • Piquot, Y., Petit, D., Valero, M., Cuguen, J., de Laguerie, P. and Vernet, P. (1998) Variation in sexual and asexual reproduction among young and old populations of the perennial macrophyteSparganium erectum.Oikos82, 139-148.

    Google Scholar 

  • Piquot, Y., Samitou-Laprade, P., Petit, D., Vernet, P. and Epplen, J.T. (1996) Genotypic diversity revealed by allozymes and oligonucleotide DNA fingerprinting in French populations of the aquatic macrophyteSparganium erectum.Mol. Ecol.5, 251-258.

    Google Scholar 

  • Poulson, T.L. and White, W.B. (1969) The cave environment.Science165, 971-981.

    Google Scholar 

  • Preston, C.D. and Croft, J.M. (1997)Aquatic Plants in Britain and Ireland. Harley Books, Colchester, UK.

    Google Scholar 

  • Preuss, D. (1995) Being fruitful: genetics of reproduction inArabidopsis.Tr. Genet.11, 147-153.

    Google Scholar 

  • Prout, T. (1964) Observations on structural reduction in evolution.Amer. Nat.98, 239-249.

    Google Scholar 

  • Regal, P.J. (1977) Evolutionary loss of useless features: is it molecular noise suppression?Amer. Nat.111, 123-133.

    Google Scholar 

  • Reinartz, J.A. and Les, D.H. (1994) Bottleneck-induced dissolution of self-incompatibility and breeding system consequences inAster furcatus (Asteraceac).Amer. J. Bot.81, 446-455.

    Google Scholar 

  • Reusch, T.B.H., Hukriede, W., Stam, W.T. and Olsen, J.L. (1999) Differentiating between clonal growth and limited gene flow using spatial autocorrelation of microsatellites.Heredity2, 120-126.

    Google Scholar 

  • Richards, A.J. (1986)Plant Breeding Systems. George Allen & Unwin, London, UK.

    Google Scholar 

  • Salisbury, E.J. (1942)The Reproductive Capacity of Plants. Bell, London, UK.

    Google Scholar 

  • Schmid, B. (1990) Some ecological and evolutionary consequences of modular organization and clonal growth in plants.Evol. Trends Plants4, 25-34.

    Google Scholar 

  • Sculthorpe, C.D. (1967)The Biology of Aquatic Vascular Plants. Edward Arnold, London, UK.

    Google Scholar 

  • Silander, J.A. Jr. (1985) Microevolution in clonal plants. In J.B.C. Jackson, L.W. Buss and R.E. Cook (eds)Population Biology and Evolution of Clonal Organisms. Yale University Press, London, UK, pp. 107-152.

    Google Scholar 

  • Smouse, P.E. and Peakall, R. (1999) Spatial autocorrelation analysis of individual multiallele and multilocus genetic structure.Heredity5, 561-573.

    Google Scholar 

  • Soltis, D.E., Soltis, P.S. and Noyes, R.D. (1988) An electrophoretic investigation of intragametophytic selfing inEquisetum arvense.Amer. J. Bot.75, 231-237.

    Google Scholar 

  • Starfinger, U. and Stöcklin, J. (1996) Seed, pollen, and clonal dispersal and their role in structuring plants populations.Prog. Bot.57, 336-355.

    Google Scholar 

  • Stebbins, G.L. (1971)Chromosomal Evolution in Higher Plants. Edward Arnold, London, UK.

    Google Scholar 

  • Suda, Y. (1995) Differentiation ofAdonis L. in Japan IV. Floral characters.Acta Phytotax. Geobot.46, 29-46.

    Google Scholar 

  • Verkleij, J.A.C., Pieterse, A.H., Horneman, G.J.T. and Torenbeek, M. (1983) A comparative study of morphology and isoenzyme patterns ofHydrilla verticillata (L. f.) Royle.Aquatic Bot.17, 43-59.

    Google Scholar 

  • Vuorisalo, T., Tuomi, J., Pederson, B. and Käär, P. (1997) Hierarchical selection in clonal plants. In H. de Kroon and J. van Groenendael (eds)The Ecology and Evolution of Clonal Plants. Backhuys, Leiden, The Netherlands, pp. 243-261.

    Google Scholar 

  • Watkinson, A.R. and Powell, J.C. (1993) Seedling recruitment and the maintenance of clonal diversity in plant populations: A computer simulation ofRanunculus repens.J. Ecol.81, 707-717.

    Google Scholar 

  • Widén, B., Cronberg, N. and Widén, M. (1994) Genotypic diversity, molecular markers and spatial distribution of genets in clonal plants. In L. Soukupová, C. Marshall, T. Hara and T. Herben (eds)Plant Clonality, Biology and Diversity. Opulus Press, Uppsala, Sweden, pp. 139-157.

    Google Scholar 

  • Wilkens, H. (1988) Evolution and genetics of epigean and caveAstynax fasciatus (Characidae, Pisces), Support for the neutral mutation theory.Evol. Biol.23, 271-367.

    Google Scholar 

  • Woodward, F.I. (1990) The impact of low temperatures in controlling the geographic distributions of plants.Phil. Trans. Roy. Soc. London B326, 585-593.

    Google Scholar 

  • Wright, S. (1964) Pleiotropy in the evolution of structural reduction and of dominance.Amer. Nat.98, 65-69.

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Biology, Queen's University, Kingston, Ontario, Canada, K7L 3N6

    Christopher G. Eckert

Authors
  1. Christopher G. Eckert

    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Advertisement


[8]ページ先頭

©2009-2025 Movatter.jp