- Marcin Badziak ORCID:orcid.org/0000-0001-8641-33721 &
- Maxim Laletin ORCID:orcid.org/0000-0003-3345-34981
260Accesses
6Citations
1 Altmetric
Apreprint version of the article is available at arXiv.
Abstract
We compute the QCD axion contribution to the energy density of dark radiation, parameterized by ∆Neff, by solving Boltzmann equations for the momentum distribution functions including the effects of quantum statistics for all particles involved in the axion production processes. This approach gives precise prediction for ∆Neff independently of whether axions are produced via freeze-out or freeze-in. We focus on axions produced via flavor-conserving and flavor-violating interactions with leptons. Our precise predictions for ∆Neff can differ from those assuming thermal shape for the momentum distribution functions, as commonly done in the literature, by more than the experimental precision of future Cosmic Microwave Background (CMB) observations. Current lower limits on the axion couplings from Planck constraints on ∆Neff are also affected by our precise computation which, in particular, results in a strongly relaxed bound on flavor-violating axion couplings to tau lepton and muon or electron.
Article PDF
Similar content being viewed by others
Explore related subjects
Discover the latest articles, books and news in related subjects, suggested using machine learning.References
S. Weinberg,A New Light Boson?,Phys. Rev. Lett.40 (1978) 223 [INSPIRE].
F. Wilczek,Problem of Strong P and T Invariance in the Presence of Instantons,Phys. Rev. Lett.40 (1978) 279 [INSPIRE].
R.D. Peccei and H.R. Quinn,CP Conservation in the Presence of Instantons,Phys. Rev. Lett.38 (1977) 1440 [INSPIRE].
R.D. Peccei and H.R. Quinn,Constraints Imposed by CP Conservation in the Presence of Instantons,Phys. Rev. D16 (1977) 1791 [INSPIRE].
J. Preskill, M.B. Wise and F. Wilczek,Cosmology of the Invisible Axion,Phys. Lett. B120 (1983) 127 [INSPIRE].
L.F. Abbott and P. Sikivie,A Cosmological Bound on the Invisible Axion,Phys. Lett. B120 (1983) 133 [INSPIRE].
M. Dine and W. Fischler,The Not So Harmless Axion,Phys. Lett. B120 (1983) 137 [INSPIRE].
G. Grilli di Cortona, E. Hardy, J. Pardo Vega and G. Villadoro,The QCD axion, precisely,JHEP01 (2016) 034 [arXiv:1511.02867] [INSPIRE].
J.E. Kim,Weak Interaction Singlet and Strong CP Invariance,Phys. Rev. Lett.43 (1979) 103 [INSPIRE].
M.A. Shifman, A.I. Vainshtein and V.I. Zakharov,Can Confinement Ensure Natural CP Invariance of Strong Interactions?,Nucl. Phys. B166 (1980) 493 [INSPIRE].
M. Dine, W. Fischler and M. Srednicki,A Simple Solution to the Strong CP Problem with a Harmless Axion,Phys. Lett. B104 (1981) 199 [INSPIRE].
A.R. Zhitnitsky,On Possible Suppression of the Axion Hadron Interactions (in Russian),Sov. J. Nucl. Phys.31 (1980) 260 [INSPIRE].
P. Carenza et al.,Improved axion emissivity from a supernova via nucleon-nucleon bremsstrahlung,JCAP10 (2019) 016 [Erratum ibid.05 (2020) E01] [arXiv:1906.11844] [INSPIRE].
M. Buschmann et al.,Upper Limit on the QCD Axion Mass from Isolated Neutron Star Cooling,Phys. Rev. Lett.128 (2022) 091102 [arXiv:2111.09892] [INSPIRE].
J.H. Chang, R. Essig and S.D. McDermott,Supernova 1987A Constraints on Sub-GeV Dark Sectors, Millicharged Particles, the QCD Axion, and an Axion-like Particle,JHEP09 (2018) 051 [arXiv:1803.00993] [INSPIRE].
N. Bar, K. Blum and G. D’Amico,Is there a supernova bound on axions?,Phys. Rev. D101 (2020) 123025 [arXiv:1907.05020] [INSPIRE].
P. Carenza et al.,Enhanced Supernova Axion Emission and its Implications,Phys. Rev. Lett.126 (2021) 071102 [arXiv:2010.02943] [INSPIRE].
K. Springmann, M. Stadlbauer, S. Stelzl and A. Weiler,From Supernovae to Neutron Stars: A Systematic Approach to Axion Production at Finite Density,arXiv:2410.10945 [INSPIRE].
L. Di Luzio et al.,Astrophobic Axions,Phys. Rev. Lett.120 (2018) 261803 [arXiv:1712.04940] [INSPIRE].
F. Björkeroth et al.,Axion-electron decoupling in nucleophobic axion models,Phys. Rev. D101 (2020) 035027 [arXiv:1907.06575] [INSPIRE].
M. Badziak, G. Grilli di Cortona, M. Tabet and R. Ziegler,Flavor-violating Higgs decays and stellar cooling anomalies in axion models,JHEP10 (2021) 181 [arXiv:2107.09708] [INSPIRE].
M. Badziak and K. Harigaya,Naturally astrophobic QCD axion,JHEP06 (2023) 014 [arXiv:2301.09647] [INSPIRE].
M. Badziak, K. Harigaya, M. Łukawski and R. Ziegler,Thermal production of astrophobic axions,JHEP09 (2024) 136 [arXiv:2403.05621] [INSPIRE].
S. Chang and K. Choi,Hadronic axion window and the big bang nucleosynthesis,Phys. Lett. B316 (1993) 51 [hep-ph/9306216] [INSPIRE].
S. Hannestad, A. Mirizzi and G. Raffelt,New cosmological mass limit on thermal relic axions,JCAP07 (2005) 002 [hep-ph/0504059] [INSPIRE].
F. D’Eramo et al.,Cosmological bound on the QCD axion mass, redux,JCAP09 (2022) 022 [arXiv:2205.07849] [INSPIRE].
T.-H. Yeh, J. Shelton, K.A. Olive and B.D. Fields,Probing physics beyond the standard model: limits from BBN and the CMB independently and combined,JCAP10 (2022) 046 [arXiv:2207.13133] [INSPIRE].
Planck collaboration,Planck 2018 results. VI. Cosmological parameters,Astron. Astrophys.641 (2020) A6 [Erratum ibid.652 (2021) C4] [arXiv:1807.06209] [INSPIRE].
Simons Observatory collaboration,The Simons Observatory: Science goals and forecasts,JCAP02 (2019) 056 [arXiv:1808.07445] [INSPIRE].
CMB-S4 collaboration,CMB-S4 Science Book, First Edition,arXiv:1610.02743 [INSPIRE].
R.Z. Ferreira and A. Notari,Observable Windows for the QCD Axion Through the Number of Relativistic Species,Phys. Rev. Lett.120 (2018) 191301 [arXiv:1801.06090] [INSPIRE].
F. D’Eramo, R.Z. Ferreira, A. Notari and J.L. Bernal,Hot Axions and the H0tension,JCAP11 (2018) 014 [arXiv:1808.07430] [INSPIRE].
F. Arias-Aragón et al.,Production of Thermal Axions across the ElectroWeak Phase Transition,JCAP03 (2021) 090 [arXiv:2012.04736] [INSPIRE].
R.Z. Ferreira, A. Notari and F. Rompineve,Dine-Fischler-Srednicki-Zhitnitsky axion in the CMB,Phys. Rev. D103 (2021) 063524 [arXiv:2012.06566] [INSPIRE].
D. Green, Y. Guo and B. Wallisch,Cosmological implications of axion-matter couplings,JCAP02 (2022) 019 [arXiv:2109.12088] [INSPIRE].
F. D’Eramo and S. Yun,Flavor violating axions in the early Universe,Phys. Rev. D105 (2022) 075002 [arXiv:2111.12108] [INSPIRE].
F. D’Eramo, F. Hajkarim and S. Yun,Thermal Axion Production at Low Temperatures: A Smooth Treatment of the QCD Phase Transition,Phys. Rev. Lett.128 (2022) 152001 [arXiv:2108.04259] [INSPIRE].
F. D’Eramo, F. Hajkarim and S. Yun,Thermal QCD Axions across Thresholds,JHEP10 (2021) 224 [arXiv:2108.05371] [INSPIRE].
L.J. Hall, K. Jedamzik, J. March-Russell and S.M. West,Freeze-In Production of FIMP Dark Matter,JHEP03 (2010) 080 [arXiv:0911.1120] [INSPIRE].
A. Notari, F. Rompineve and G. Villadoro,Improved Hot Dark Matter Bound on the QCD Axion,Phys. Rev. Lett.131 (2023) 011004 [arXiv:2211.03799] [INSPIRE].
F. Bianchini, G.G. di Cortona and M. Valli,QCD axion: Some like it hot,Phys. Rev. D110 (2024) 123527 [arXiv:2310.08169] [INSPIRE].
D.I. Dunsky, L.J. Hall and K. Harigaya,Dark Radiation Constraints on Heavy QCD Axions,JHEP04 (2024) 130 [arXiv:2205.11540] [INSPIRE].
K. Bouzoud and J. Ghiglieri,Thermal axion production at hard and soft momenta,arXiv:2404.06113 [INSPIRE].
Y. Ema, K. Hamaguchi, T. Moroi and K. Nakayama,Flaxion: a minimal extension to solve puzzles in the standard model,JHEP01 (2017) 096 [arXiv:1612.05492] [INSPIRE].
L. Calibbi et al.,Minimal axion model from flavor,Phys. Rev. D95 (2017) 095009 [arXiv:1612.08040] [INSPIRE].
XENON collaboration,Search for New Physics in Electronic Recoil Data from XENONnT,Phys. Rev. Lett.129 (2022) 161805 [arXiv:2207.11330] [INSPIRE].
LZ collaboration,Search for new physics in low-energy electron recoils from the first LZ exposure,Phys. Rev. D108 (2023) 072006 [arXiv:2307.15753] [INSPIRE].
PandaX collaboration,Exploring New Physics with PandaX-4T Low Energy Electronic Recoil Data,Phys. Rev. Lett.134 (2025) 041001 [arXiv:2408.07641] [INSPIRE].
A. Jodidio et al.,Search for Right-Handed Currents in Muon Decay,Phys. Rev. D34 (1986) 1967 [Erratum ibid.37 (1988) 237] [INSPIRE].
TWIST collaboration,Search for two body muon decay signals,Phys. Rev. D91 (2015) 052020 [arXiv:1409.0638] [INSPIRE].
L. Calibbi, D. Redigolo, R. Ziegler and J. Zupan,Looking forward to lepton-flavor-violating ALPs,JHEP09 (2021) 173 [arXiv:2006.04795] [INSPIRE].
P. Gondolo and G. Gelmini,Cosmic abundances of stable particles: Improved analysis,Nucl. Phys. B360 (1991) 145 [INSPIRE].
S. Borsanyi et al.,Calculation of the axion mass based on high-temperature lattice quantum chromodynamics,Nature539 (2016) 69 [arXiv:1606.07494] [INSPIRE].
G. Alguero et al.,micrOMEGAs 6.0: N-component dark matter,Comput. Phys. Commun.299 (2024) 109133 [arXiv:2312.14894] [INSPIRE].
F. Ambrogi et al.,MadDM v.3.0: a Comprehensive Tool for Dark Matter Studies,Phys. Dark Univ.24 (2019) 100249 [arXiv:1804.00044] [INSPIRE].
T. Bringmann et al.,DarkSUSY 6: An Advanced Tool to Compute Dark Matter Properties Numerically,JCAP07 (2018) 033 [arXiv:1802.03399] [INSPIRE].
T. Binder, T. Bringmann, M. Gustafsson and A. Hryczuk,Early kinetic decoupling of dark matter: when the standard way of calculating the thermal relic density fails,Phys. Rev. D96 (2017) 115010 [Erratum ibid.101 (2020) 099901] [arXiv:1706.07433] [INSPIRE].
A. Hryczuk and M. Laletin,Impact of dark matter self-scattering on its relic abundance,Phys. Rev. D106 (2022) 023007 [arXiv:2204.07078] [INSPIRE].
M. Olechowski and P.L. Szczerbiak,Effects of quantum statistics on relic density of Dark Radiation,Eur. Phys. J. C78 (2018) 704 [arXiv:1807.00490] [INSPIRE].
F. D’Eramo, F. Hajkarim and A. Lenoci,Dark radiation from the primordial thermal bath in momentum space,JCAP03 (2024) 009 [arXiv:2311.04974] [INSPIRE].
T. Binder, T. Bringmann, M. Gustafsson and A. Hryczuk,Dark matter relic abundance beyond kinetic equilibrium,Eur. Phys. J. C81 (2021) 577 [arXiv:2103.01944] [INSPIRE].
J. Lesgourgues and S. Pastor,Massive neutrinos and cosmology,Phys. Rept.429 (2006) 307 [astro-ph/0603494] [INSPIRE].
M. Aghaie et al.,Axion dark matter from heavy quarks,Phys. Lett. B856 (2024) 138923 [arXiv:2404.12199] [INSPIRE].
A. Salvio, A. Strumia and W. Xue,Thermal axion production,JCAP01 (2014) 011 [arXiv:1310.6982] [INSPIRE].
L. Caloni, M. Gerbino, M. Lattanzi and L. Visinelli,Novel cosmological bounds on thermally-produced axion-like particles,JCAP09 (2022) 021 [arXiv:2205.01637] [INSPIRE].
Belle-II collaboration,Search for Lepton-Flavor-Violating τ Decays to a Lepton and an Invisible Boson at Belle II,Phys. Rev. Lett.130 (2023) 181803 [arXiv:2212.03634] [INSPIRE].
F. D’Eramo and A. Lenoci,Back to the phase space: Thermal axion dark radiation via couplings to standard model fermions,Phys. Rev. D110 (2024) 116028 [arXiv:2410.21253] [INSPIRE].
Acknowledgments
The authors would like to thank Michał Łukawski and Seokhoon Yun for useful discussions. This work was partially supported by the National Science Centre, Poland, under research grant no. 2020/38/E/ST2/00243.
Author information
Authors and Affiliations
Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, PL-02-093, Warsaw, Poland
Marcin Badziak & Maxim Laletin
- Marcin Badziak
Search author on:PubMed Google Scholar
- Maxim Laletin
Search author on:PubMed Google Scholar
Corresponding author
Correspondence toMaxim Laletin.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint:2410.18186
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Badziak, M., Laletin, M. Precise predictions for the QCD axion contribution to dark radiation with full phase-space evolution.J. High Energ. Phys.2025, 108 (2025). https://doi.org/10.1007/JHEP02(2025)108
Received:
Accepted:
Published:
Version of record:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
