Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Precise predictions for the QCD axion contribution to dark radiation with full phase-space evolution

  • Regular Article - Theoretical Physics
  • Open access
  • Published:

You have full access to thisopen access article

Journal of High Energy Physics Aims and scope Submit manuscript

Apreprint version of the article is available at arXiv.

Abstract

We compute the QCD axion contribution to the energy density of dark radiation, parameterized by ∆Neff, by solving Boltzmann equations for the momentum distribution functions including the effects of quantum statistics for all particles involved in the axion production processes. This approach gives precise prediction for ∆Neff independently of whether axions are produced via freeze-out or freeze-in. We focus on axions produced via flavor-conserving and flavor-violating interactions with leptons. Our precise predictions for ∆Neff can differ from those assuming thermal shape for the momentum distribution functions, as commonly done in the literature, by more than the experimental precision of future Cosmic Microwave Background (CMB) observations. Current lower limits on the axion couplings from Planck constraints on ∆Neff are also affected by our precise computation which, in particular, results in a strongly relaxed bound on flavor-violating axion couplings to tau lepton and muon or electron.

Article PDF

Similar content being viewed by others

ArticleOpen access24 April 2024

ArticleOpen access29 January 2025

ArticleOpen access08 March 2018

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.

References

  1. S. Weinberg,A New Light Boson?,Phys. Rev. Lett.40 (1978) 223 [INSPIRE].

  2. F. Wilczek,Problem of Strong P and T Invariance in the Presence of Instantons,Phys. Rev. Lett.40 (1978) 279 [INSPIRE].

  3. R.D. Peccei and H.R. Quinn,CP Conservation in the Presence of Instantons,Phys. Rev. Lett.38 (1977) 1440 [INSPIRE].

  4. R.D. Peccei and H.R. Quinn,Constraints Imposed by CP Conservation in the Presence of Instantons,Phys. Rev. D16 (1977) 1791 [INSPIRE].

  5. J. Preskill, M.B. Wise and F. Wilczek,Cosmology of the Invisible Axion,Phys. Lett. B120 (1983) 127 [INSPIRE].

  6. L.F. Abbott and P. Sikivie,A Cosmological Bound on the Invisible Axion,Phys. Lett. B120 (1983) 133 [INSPIRE].

  7. M. Dine and W. Fischler,The Not So Harmless Axion,Phys. Lett. B120 (1983) 137 [INSPIRE].

  8. G. Grilli di Cortona, E. Hardy, J. Pardo Vega and G. Villadoro,The QCD axion, precisely,JHEP01 (2016) 034 [arXiv:1511.02867] [INSPIRE].

    Article  Google Scholar 

  9. J.E. Kim,Weak Interaction Singlet and Strong CP Invariance,Phys. Rev. Lett.43 (1979) 103 [INSPIRE].

  10. M.A. Shifman, A.I. Vainshtein and V.I. Zakharov,Can Confinement Ensure Natural CP Invariance of Strong Interactions?,Nucl. Phys. B166 (1980) 493 [INSPIRE].

  11. M. Dine, W. Fischler and M. Srednicki,A Simple Solution to the Strong CP Problem with a Harmless Axion,Phys. Lett. B104 (1981) 199 [INSPIRE].

  12. A.R. Zhitnitsky,On Possible Suppression of the Axion Hadron Interactions (in Russian),Sov. J. Nucl. Phys.31 (1980) 260 [INSPIRE].

  13. P. Carenza et al.,Improved axion emissivity from a supernova via nucleon-nucleon bremsstrahlung,JCAP10 (2019) 016 [Erratum ibid.05 (2020) E01] [arXiv:1906.11844] [INSPIRE].

  14. M. Buschmann et al.,Upper Limit on the QCD Axion Mass from Isolated Neutron Star Cooling,Phys. Rev. Lett.128 (2022) 091102 [arXiv:2111.09892] [INSPIRE].

    Article ADS  Google Scholar 

  15. J.H. Chang, R. Essig and S.D. McDermott,Supernova 1987A Constraints on Sub-GeV Dark Sectors, Millicharged Particles, the QCD Axion, and an Axion-like Particle,JHEP09 (2018) 051 [arXiv:1803.00993] [INSPIRE].

  16. N. Bar, K. Blum and G. D’Amico,Is there a supernova bound on axions?,Phys. Rev. D101 (2020) 123025 [arXiv:1907.05020] [INSPIRE].

    Article ADS  Google Scholar 

  17. P. Carenza et al.,Enhanced Supernova Axion Emission and its Implications,Phys. Rev. Lett.126 (2021) 071102 [arXiv:2010.02943] [INSPIRE].

    Article ADS  Google Scholar 

  18. K. Springmann, M. Stadlbauer, S. Stelzl and A. Weiler,From Supernovae to Neutron Stars: A Systematic Approach to Axion Production at Finite Density,arXiv:2410.10945 [INSPIRE].

  19. L. Di Luzio et al.,Astrophobic Axions,Phys. Rev. Lett.120 (2018) 261803 [arXiv:1712.04940] [INSPIRE].

    Article ADS  Google Scholar 

  20. F. Björkeroth et al.,Axion-electron decoupling in nucleophobic axion models,Phys. Rev. D101 (2020) 035027 [arXiv:1907.06575] [INSPIRE].

    Article ADS  Google Scholar 

  21. M. Badziak, G. Grilli di Cortona, M. Tabet and R. Ziegler,Flavor-violating Higgs decays and stellar cooling anomalies in axion models,JHEP10 (2021) 181 [arXiv:2107.09708] [INSPIRE].

    Article ADS  Google Scholar 

  22. M. Badziak and K. Harigaya,Naturally astrophobic QCD axion,JHEP06 (2023) 014 [arXiv:2301.09647] [INSPIRE].

    Article ADS  Google Scholar 

  23. M. Badziak, K. Harigaya, M. Łukawski and R. Ziegler,Thermal production of astrophobic axions,JHEP09 (2024) 136 [arXiv:2403.05621] [INSPIRE].

    Article ADS  Google Scholar 

  24. S. Chang and K. Choi,Hadronic axion window and the big bang nucleosynthesis,Phys. Lett. B316 (1993) 51 [hep-ph/9306216] [INSPIRE].

  25. S. Hannestad, A. Mirizzi and G. Raffelt,New cosmological mass limit on thermal relic axions,JCAP07 (2005) 002 [hep-ph/0504059] [INSPIRE].

  26. F. D’Eramo et al.,Cosmological bound on the QCD axion mass, redux,JCAP09 (2022) 022 [arXiv:2205.07849] [INSPIRE].

    Article ADS  Google Scholar 

  27. T.-H. Yeh, J. Shelton, K.A. Olive and B.D. Fields,Probing physics beyond the standard model: limits from BBN and the CMB independently and combined,JCAP10 (2022) 046 [arXiv:2207.13133] [INSPIRE].

    Article ADS  Google Scholar 

  28. Planck collaboration,Planck 2018 results. VI. Cosmological parameters,Astron. Astrophys.641 (2020) A6 [Erratum ibid.652 (2021) C4] [arXiv:1807.06209] [INSPIRE].

  29. Simons Observatory collaboration,The Simons Observatory: Science goals and forecasts,JCAP02 (2019) 056 [arXiv:1808.07445] [INSPIRE].

  30. CMB-S4 collaboration,CMB-S4 Science Book, First Edition,arXiv:1610.02743 [INSPIRE].

  31. R.Z. Ferreira and A. Notari,Observable Windows for the QCD Axion Through the Number of Relativistic Species,Phys. Rev. Lett.120 (2018) 191301 [arXiv:1801.06090] [INSPIRE].

    Article ADS  Google Scholar 

  32. F. D’Eramo, R.Z. Ferreira, A. Notari and J.L. Bernal,Hot Axions and the H0tension,JCAP11 (2018) 014 [arXiv:1808.07430] [INSPIRE].

    Article ADS  Google Scholar 

  33. F. Arias-Aragón et al.,Production of Thermal Axions across the ElectroWeak Phase Transition,JCAP03 (2021) 090 [arXiv:2012.04736] [INSPIRE].

    Article ADS  Google Scholar 

  34. R.Z. Ferreira, A. Notari and F. Rompineve,Dine-Fischler-Srednicki-Zhitnitsky axion in the CMB,Phys. Rev. D103 (2021) 063524 [arXiv:2012.06566] [INSPIRE].

    Article ADS  Google Scholar 

  35. D. Green, Y. Guo and B. Wallisch,Cosmological implications of axion-matter couplings,JCAP02 (2022) 019 [arXiv:2109.12088] [INSPIRE].

    Article ADS  Google Scholar 

  36. F. D’Eramo and S. Yun,Flavor violating axions in the early Universe,Phys. Rev. D105 (2022) 075002 [arXiv:2111.12108] [INSPIRE].

    Article ADS  Google Scholar 

  37. F. D’Eramo, F. Hajkarim and S. Yun,Thermal Axion Production at Low Temperatures: A Smooth Treatment of the QCD Phase Transition,Phys. Rev. Lett.128 (2022) 152001 [arXiv:2108.04259] [INSPIRE].

    Article ADS  Google Scholar 

  38. F. D’Eramo, F. Hajkarim and S. Yun,Thermal QCD Axions across Thresholds,JHEP10 (2021) 224 [arXiv:2108.05371] [INSPIRE].

    Article ADS  Google Scholar 

  39. L.J. Hall, K. Jedamzik, J. March-Russell and S.M. West,Freeze-In Production of FIMP Dark Matter,JHEP03 (2010) 080 [arXiv:0911.1120] [INSPIRE].

    Article ADS  Google Scholar 

  40. A. Notari, F. Rompineve and G. Villadoro,Improved Hot Dark Matter Bound on the QCD Axion,Phys. Rev. Lett.131 (2023) 011004 [arXiv:2211.03799] [INSPIRE].

    Article ADS  Google Scholar 

  41. F. Bianchini, G.G. di Cortona and M. Valli,QCD axion: Some like it hot,Phys. Rev. D110 (2024) 123527 [arXiv:2310.08169] [INSPIRE].

    Article ADS  Google Scholar 

  42. D.I. Dunsky, L.J. Hall and K. Harigaya,Dark Radiation Constraints on Heavy QCD Axions,JHEP04 (2024) 130 [arXiv:2205.11540] [INSPIRE].

    Article ADS  Google Scholar 

  43. K. Bouzoud and J. Ghiglieri,Thermal axion production at hard and soft momenta,arXiv:2404.06113 [INSPIRE].

  44. Y. Ema, K. Hamaguchi, T. Moroi and K. Nakayama,Flaxion: a minimal extension to solve puzzles in the standard model,JHEP01 (2017) 096 [arXiv:1612.05492] [INSPIRE].

    Article ADS MathSciNet  Google Scholar 

  45. L. Calibbi et al.,Minimal axion model from flavor,Phys. Rev. D95 (2017) 095009 [arXiv:1612.08040] [INSPIRE].

    Article ADS  Google Scholar 

  46. XENON collaboration,Search for New Physics in Electronic Recoil Data from XENONnT,Phys. Rev. Lett.129 (2022) 161805 [arXiv:2207.11330] [INSPIRE].

  47. LZ collaboration,Search for new physics in low-energy electron recoils from the first LZ exposure,Phys. Rev. D108 (2023) 072006 [arXiv:2307.15753] [INSPIRE].

  48. PandaX collaboration,Exploring New Physics with PandaX-4T Low Energy Electronic Recoil Data,Phys. Rev. Lett.134 (2025) 041001 [arXiv:2408.07641] [INSPIRE].

  49. A. Jodidio et al.,Search for Right-Handed Currents in Muon Decay,Phys. Rev. D34 (1986) 1967 [Erratum ibid.37 (1988) 237] [INSPIRE].

  50. TWIST collaboration,Search for two body muon decay signals,Phys. Rev. D91 (2015) 052020 [arXiv:1409.0638] [INSPIRE].

  51. L. Calibbi, D. Redigolo, R. Ziegler and J. Zupan,Looking forward to lepton-flavor-violating ALPs,JHEP09 (2021) 173 [arXiv:2006.04795] [INSPIRE].

    Article ADS  Google Scholar 

  52. P. Gondolo and G. Gelmini,Cosmic abundances of stable particles: Improved analysis,Nucl. Phys. B360 (1991) 145 [INSPIRE].

  53. S. Borsanyi et al.,Calculation of the axion mass based on high-temperature lattice quantum chromodynamics,Nature539 (2016) 69 [arXiv:1606.07494] [INSPIRE].

    Article ADS  Google Scholar 

  54. G. Alguero et al.,micrOMEGAs 6.0: N-component dark matter,Comput. Phys. Commun.299 (2024) 109133 [arXiv:2312.14894] [INSPIRE].

  55. F. Ambrogi et al.,MadDM v.3.0: a Comprehensive Tool for Dark Matter Studies,Phys. Dark Univ.24 (2019) 100249 [arXiv:1804.00044] [INSPIRE].

  56. T. Bringmann et al.,DarkSUSY 6: An Advanced Tool to Compute Dark Matter Properties Numerically,JCAP07 (2018) 033 [arXiv:1802.03399] [INSPIRE].

    Article ADS  Google Scholar 

  57. T. Binder, T. Bringmann, M. Gustafsson and A. Hryczuk,Early kinetic decoupling of dark matter: when the standard way of calculating the thermal relic density fails,Phys. Rev. D96 (2017) 115010 [Erratum ibid.101 (2020) 099901] [arXiv:1706.07433] [INSPIRE].

  58. A. Hryczuk and M. Laletin,Impact of dark matter self-scattering on its relic abundance,Phys. Rev. D106 (2022) 023007 [arXiv:2204.07078] [INSPIRE].

    Article ADS  Google Scholar 

  59. M. Olechowski and P.L. Szczerbiak,Effects of quantum statistics on relic density of Dark Radiation,Eur. Phys. J. C78 (2018) 704 [arXiv:1807.00490] [INSPIRE].

    Article ADS  Google Scholar 

  60. F. D’Eramo, F. Hajkarim and A. Lenoci,Dark radiation from the primordial thermal bath in momentum space,JCAP03 (2024) 009 [arXiv:2311.04974] [INSPIRE].

    Article ADS MathSciNet  Google Scholar 

  61. T. Binder, T. Bringmann, M. Gustafsson and A. Hryczuk,Dark matter relic abundance beyond kinetic equilibrium,Eur. Phys. J. C81 (2021) 577 [arXiv:2103.01944] [INSPIRE].

    Article ADS  Google Scholar 

  62. J. Lesgourgues and S. Pastor,Massive neutrinos and cosmology,Phys. Rept.429 (2006) 307 [astro-ph/0603494] [INSPIRE].

  63. M. Aghaie et al.,Axion dark matter from heavy quarks,Phys. Lett. B856 (2024) 138923 [arXiv:2404.12199] [INSPIRE].

    Article  Google Scholar 

  64. https://github.com/Maxim-Laletin/CollCalc.

  65. A. Salvio, A. Strumia and W. Xue,Thermal axion production,JCAP01 (2014) 011 [arXiv:1310.6982] [INSPIRE].

    Article ADS  Google Scholar 

  66. L. Caloni, M. Gerbino, M. Lattanzi and L. Visinelli,Novel cosmological bounds on thermally-produced axion-like particles,JCAP09 (2022) 021 [arXiv:2205.01637] [INSPIRE].

    Article ADS  Google Scholar 

  67. Belle-II collaboration,Search for Lepton-Flavor-Violating τ Decays to a Lepton and an Invisible Boson at Belle II,Phys. Rev. Lett.130 (2023) 181803 [arXiv:2212.03634] [INSPIRE].

  68. F. D’Eramo and A. Lenoci,Back to the phase space: Thermal axion dark radiation via couplings to standard model fermions,Phys. Rev. D110 (2024) 116028 [arXiv:2410.21253] [INSPIRE].

    Article ADS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Michał Łukawski and Seokhoon Yun for useful discussions. This work was partially supported by the National Science Centre, Poland, under research grant no. 2020/38/E/ST2/00243.

Author information

Authors and Affiliations

  1. Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, PL-02-093, Warsaw, Poland

    Marcin Badziak & Maxim Laletin

Authors
  1. Marcin Badziak
  2. Maxim Laletin

Corresponding author

Correspondence toMaxim Laletin.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint:2410.18186

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badziak, M., Laletin, M. Precise predictions for the QCD axion contribution to dark radiation with full phase-space evolution.J. High Energ. Phys.2025, 108 (2025). https://doi.org/10.1007/JHEP02(2025)108

Download citation

Keywords

Advertisement


[8]ページ先頭

©2009-2026 Movatter.jp