Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Cryptographic Hash-Function Basics: Definitions, Implications, and Separations for Preimage Resistance, Second-Preimage Resistance, and Collision Resistance

  • Conference paper

Part of the book series:Lecture Notes in Computer Science ((LNCS,volume 3017))

Included in the following conference series:

Abstract

We consider basic notions of security for cryptographic hash functions: collision resistance, preimage resistance, and second-preimage resistance. We give seven different definitions that correspond to these three underlying ideas, and then we work out all of the implications and separations among these seven definitions within the concrete-security, provable-security framework. Because our results are concrete, we can show two types of implications,conventional andprovisional, where the strength of the latter depends on the amount of compression achieved by the hash function. We also distinguish two types of separations,conditional andunconditional. When constructing counterexamples for our separations, we are careful to preserve specified hash-function domains and ranges; this rules out some pathological counterexamples and makes the separations more meaningful in practice. Four of our definitions are standard while three appear to be new; some of our relations and separations have appeared, others have not. Here we give a modern treatment that acts to catalog, in one place and with carefully-considered nomenclature, the most basic security notions for cryptographic hash functions.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.

References

  1. Anderson, R.: The classification of hash functions. In: IMA Conference in Cryptography and Coding IV, December 1993, pp. 83–94 (1993)

    Google Scholar 

  2. Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among notions of security for public-key encryption schemes. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 232–249. Springer, Heidelberg (1998)

    Google Scholar 

  3. Bellare, M., Rogaway, P.: Collision-resistant hashing: Towards making UOWHFs practical. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 470–484. Springer, Heidelberg (1997)

    Google Scholar 

  4. Black, J., Rogaway, P., Shrimpton, T.: Black-box analysis of the blockcipher- based hash-function constructions from PGV. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, p. 320. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  5. Brown, D., Johnson, D.: Formal security proofs for a signature scheme with partial message recovery. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 126–144. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  6. Damgård, I.: Collision free hash fucntions and public key signature schemes. In: Price, W.L., Chaum, D. (eds.) EUROCRYPT 1987. LNCS, vol. 304, pp. 203–216. Springer, Heidelberg (1988)

    Google Scholar 

  7. Damgård, I.: A design principle for hash functions. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)

    Google Scholar 

  8. Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and System Sciences 28, 270–299 (1984)

    Article MATH MathSciNet  Google Scholar 

  9. Menezes, A., van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1996)

    Book  Google Scholar 

  10. Merkle, R.: One way hash functions and DES. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 428–446. Springer, Heidelberg (1990)

    Google Scholar 

  11. Mironov, I.: Hash functions: From Merkle-Damgård to Shoup. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, p. 166. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  12. Naor, M., Yung, M.: Universal one-way hash functions and their cryptographic applications. In: Proceedings of the Twenty-first ACM Symposium on Theory of Computing, pp. 33–43 (1989)

    Google Scholar 

  13. Preneel, B.: Cryptographic hash functions. Katholieke Universiteit Leuven, Belgium (1993)

    Google Scholar 

  14. Rogaway, P., Shrimpton, T.: Cryptographic hash-function basics: Definitions, implications and separations for preimage resistance, second-preimage resistance, and collision resistance (2004), Full version of this paper,http://www.cs.ucdavis.edu/~rogaway

  15. Stinson, D.: Some observations on the theory of cryptographic hash functions. Technical Report 2001/020, University of Waterloo (2001)

    Google Scholar 

  16. Zheng, Y., Matsumoto, T., Imai, H.: Connections among several versions of oneway hash functions. In: Special Issue on Cryptography and Information Security, Proceedings of IEICE of Japan (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Dept. of Computer Science, University of California, Davis, CA, 95616, USA

    Phillip Rogaway

  2. Dept. of Computer Science, Fac of Science, Chiang Mai University, 50200, Thailand

    Phillip Rogaway

  3. Dept. of Electrical and Computer Engineering, University of California, Davis, CA, 95616, USA

    Thomas Shrimpton

Authors
  1. Phillip Rogaway
  2. Thomas Shrimpton

Editor information

Editors and Affiliations

  1. Indian Statistical Institute, Applied Statistics Unit, 203 B T Road, 700 108, Kolkata, India

    Bimal Roy

  2. FHNW, Windisch, Switzerland

    Willi Meier

Rights and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rogaway, P., Shrimpton, T. (2004). Cryptographic Hash-Function Basics: Definitions, Implications, and Separations for Preimage Resistance, Second-Preimage Resistance, and Collision Resistance. In: Roy, B., Meier, W. (eds) Fast Software Encryption. FSE 2004. Lecture Notes in Computer Science, vol 3017. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-25937-4_24

Download citation

Keywords

Publish with us


[8]ページ先頭

©2009-2025 Movatter.jp