Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Springer Nature Link
Log in

Anti-cancer Effect and Underlying Mechanism(s) of Kaempferol, a Phytoestrogen, on the Regulation of Apoptosis in Diverse Cancer Cell Models

You have full access to thisopen access article

Toxicological Research Aims and scope Submit manuscript

Abstract

Phytoestrogens exist in edible compounds commonly found in fruits or plants. For long times, phytoestrogens have been used for therapeutic treatments against human diseases, and they can be promising ingredients for future pharmacological industries. Kaempferol is a yellow compound found in grapes, broccoli and yellow fruits, which is one of flavonoid as phytoestrogens. Kaempferol has been suggested to have an antioxidant and anti-inflammatory effect. In past decades, many studies have been performed to examine anti-toxicological role(s) of kaempferol against human cancers. It has been shown that kaempferol may be involved in the regulations of cell cycle, metastasis, angiogenesis and apoptosis in various cancer cell types. Among them, there have been a few of the studies to examine a relationship between kaempferol and apoptosis. Thus, in this review, we highlight the effect(s) of kaempferol on the regulation of apoptosis in diverse cancer cell models. This could be a forecast in regard to use of kaempferol as promising treatment against human diseases.

Article PDF

Similar content being viewed by others

Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. Danial, N.N. and Korsmeyer, S.J. (2004) Cell death: critical control points.Cell,116, 205–219.

    Article CAS  Google Scholar 

  2. Kastan, M.B. and Bartek, J. (2004) Cell-cycle checkpoints and cancer.Nature,432, 316–323.

    Article CAS PubMed  Google Scholar 

  3. Prehn, R.T. (1976) Tumor progression and homeostasis.Adv. Cancer Res.,23, 203–236.

    Article CAS PubMed  Google Scholar 

  4. Branca, F. and Lorenzetti, S. (2005) Health effects of phytoestrogens.Forum Nutr., 100–111.

  5. Dixon, R.A. (2004) Phytoestrogens.Annu. Rev. Plant Biol.,55, 225–261.

    Article CAS PubMed  Google Scholar 

  6. Poluzzi, E., Piccinni, C., Raschi, E., Rampa, A., Recanatini, M. and De Ponti, F. (2013) Phytoestrogens in postmenopause: the state of the art from a chemical, pharmacological and regulatory perspective.Curr. Med. Chem. In press.

  7. Tham, D.M., Gardner, C.D. and Haskell, W.L. (1998) Clinical review 97: Potential health benefits of dietary phytoestrogens: a review of the clinical, epidemiological, and mechanistic evidence.J. Clin. Endocrinol. Metab.,83, 2223–2235.

    CAS PubMed  Google Scholar 

  8. Adlercreutz, H., Mousavi, Y., Clark, J., Höckerstedt, K., Hämläinen, E., Wähälä, K., Mäkelä, T. and Hase, T. (1992) Dietary phytoestrogens and cancer: in vitro and in vivo studies.J. Steroid Biochem. Mol. Biol.,41, 331–337.

    Article CAS PubMed  Google Scholar 

  9. Hwang, K.A., Kang, N.H., Yi, B.R., Lee, H.R., Park, M.A. and Choi, K.C. (2013) Genistein, a soy phytoestrogen, prevents the growth of BG-1 ovarian cancer cells induced by 17beta-estradiol or bisphenol A via the inhibition of cell cycle progression.Int. J. Oncol.,42, 733–740.

    Article CAS PubMed  Google Scholar 

  10. Hwang, K.A., Park, M.A., Kang, N.H., Yi, B.R., Hyun, S.H., Jeung, E.B. and Choi, K.C. (2013) Anticancer effect of genistein on BG-1 ovarian cancer growth induced by 17 betaestradiol or bisphenol A via the suppression of the crosstalk between estrogen receptor alpha and insulin-like growth factor-1 receptor signaling pathways.Toxicol. Appl. Pharmacol.,272, 637–646.

    Article CAS PubMed  Google Scholar 

  11. Rice-Evans, C. (2001) Flavonoid antioxidants.Curr. Med. Chem.,8, 797–807.

    Article CAS PubMed  Google Scholar 

  12. Kim, S., Kim, K.Y., Han, C.S., Ki, K.S., Min, K.J., Zhang, X. and Whang, W.K. (2012) Simultaneous analysis of six major compounds in Osterici Radix and Notopterygii Rhizoma et Radix by HPLC and discrimination of their origins from chemical fingerprint analysis.Arch. Pharmacal Res.,35, 691–699.

    Article CAS  Google Scholar 

  13. Park, J.S., Rho, H.S., Kim, D.H. and Chang, I.S. (2006) Enzymatic preparation of kaempferol from green tea seed and its antioxidant activity.J. Agric. Food Chem.,54, 2951–2956.

    Article CAS PubMed  Google Scholar 

  14. Yoshikawa, T., Naito, Y. and Kondo, M. (1999) Ginkgo biloba leaf extract: review of biological actions and clinical applications.Antioxid. Redox Signaling,1, 469–480.

    Article CAS  Google Scholar 

  15. Kowalski, J., Samojedny, A., Paul, M., Pietsz, G. and Wilczok, T. (2005) Effect of apigenin, kaempferol and resveratrol on the expression of interleukin-1beta and tumor necrosis factor-alpha genes in J774.2 macrophages.Pharmacol. Rep.,57, 390–394.

    CAS PubMed  Google Scholar 

  16. Li, R.J., Mei, J.Z. and Liu, G.J. (2011) [Kaempferol-induced apoptosis of human esophageal squamous carcinoma Eca-109 cells and the mechanism].Nanfang Yike Daxue Xuebao,31, 1440–1442.

    PubMed  Google Scholar 

  17. Marfe, G., Tafani, M., Indelicato, M., Sinibaldi-Salimei, P., Reali, V., Pucci, B., Fini, M. and Russo, M.A. (2009) Kaempferol induces apoptosis in two different cell lines via Akt inactivation, Bax and SIRT3 activation, and mitochondrial dysfunction.J. Cell. Biochem.,106, 643–650.

    Article CAS PubMed  Google Scholar 

  18. Xie, F., Su, M., Qiu, W., Zhang, M., Guo, Z., Su, B., Liu, J., Li, X. and Zhou, L. (2013) Kaempferol promotes apoptosis in human bladder cancer cells by inducing the tumor suppressor, PTEN.Int. J. Mol. Sci.,14, 21215–21226.

    Article CAS PubMed PubMed Central  Google Scholar 

  19. Bennetts, H.W., Underwood, E.J. and Shier, F.L. (1946) A specific breeding problem of sheep on subterranean clover pastures in Western Australia.Aust. Vet. J.,22, 2–12.

    Article CAS PubMed  Google Scholar 

  20. Adlercreutz, H. (1990) Western diet and Western diseases: some hormonal and biochemical mechanisms and associations.Scand. J. Clin. Lab. Invest. Suppl.,201, 3–23.

    Article CAS PubMed  Google Scholar 

  21. Murkies, A.L., Lombard, C., Strauss, B.J., Wilcox, G., Burger, H.G. and Morton, M.S. (1995) Dietary flour supplementation decreases post-menopausal hot flushes: effect of soy and wheat.Maturitas,21, 189–195.

    Article CAS PubMed  Google Scholar 

  22. Simons, L.A., von Konigsmark, M., Simons, J. and Celermajer, D.S. (2000) Phytoestrogens do not influence lipoprotein levels or endothelial function in healthy, postmenopausal women.Am. J. Cardiol.,85, 1297–1301.

    Article CAS PubMed  Google Scholar 

  23. Atkinson, C., Compston, J.E., Day, N.E., Dowsett, M. and Bingham, S.A. (2004) The effects of phytoestrogen isoflavones on bone density in women: a double-blind, randomized, placebo-controlled trial.Am. J. Clin. Nutr.,79, 326–333.

    Article CAS PubMed  Google Scholar 

  24. Wang, C. and Kurzer, M.S. (1997) Phytoestrogen concentration determines effects on DNA synthesis in human breast cancer cells.Nutr. Cancer,28, 236–247.

    Article CAS PubMed  Google Scholar 

  25. Oh, S.M., Kim, Y.P. and Chung, K.H. (2006) Biphasic effects of kaempferol on the estrogenicity in human breast cancer cells.Arch. Pharmacal Res.,29, 354–362.

    Article CAS  Google Scholar 

  26. Kuiper, G.G., Lemmen, J.G., Carlsson, B., Corton, J.C., Safe, S.H., van der Saag, P.T., van der Burg, B. and Gustafsson, J.A. (1998) Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta.Endocrinology,139, 4252–4263.

    Article CAS PubMed  Google Scholar 

  27. Kao, Y.C., Zhou, C., Sherman, M., Laughton, C.A. and Chen, S. (1998) Molecular basis of the inhibition of human aromatase (estrogen synthetase) by flavone and isoflavone phytoestrogens: A site-directed mutagenesis study.Environ. Health Perspect.,106, 85–92.

    Article CAS PubMed PubMed Central  Google Scholar 

  28. Kang, N.H., Hwang, K.A., Lee, H.R., Choi, D.W. and Choi, K.C. (2013) Resveratrol regulates the cell viability promoted by 17beta-estradiol or bisphenol A via down-regulation of the cross-talk between estrogen receptor alpha and insulin growth factor-1 receptor in BG-1 ovarian cancer cells.Food Chem. Toxicol.,59, 373–379.

    Article CAS PubMed  Google Scholar 

  29. Murkies, A.L., Wilcox, G. and Davis, S.R. (1998) Clinical review 92: Phytoestrogens.J. Clin. Endocrinol. Metab.,83, 297–303.

    CAS PubMed  Google Scholar 

  30. Choi, E.J. and Ahn, W.S. (2008) Kaempferol induced the apoptosis via cell cycle arrest in human breast cancer MDA-MB-453 cells.Nutr. Res. Pract.,2, 322–325.

    Article CAS PubMed PubMed Central  Google Scholar 

  31. Havsteen, B.H. (2002) The biochemistry and medical significance of the flavonoids.Pharmacol. Ther.,96, 67–202.

    Article CAS PubMed  Google Scholar 

  32. Touillaud, M.S., Pillow, P.C., Jakovljevic, J., Bondy, M.L., Singletary, S.E., Li, D. and Chang, S. (2005) Effect of dietary intake of phytoestrogens on estrogen receptor status in premenopausal women with breast cancer.Nutr. Cancer,51, 162–169.

    Article CAS PubMed  Google Scholar 

  33. Luo, H., Rankin, G.O., Liu, L., Daddysman, M.K., Jiang, B.H. and Chen, Y.C. (2009) Kaempferol inhibits angiogenesis and VEGF expression through both HIF dependent and independent pathways in human ovarian cancer cells.Nutr. Cancer,61, 554–563.

    Article CAS PubMed PubMed Central  Google Scholar 

  34. Luo, H., Rankin, G.O., Juliano, N., Jiang, B.H. and Chen, Y.C. (2012) Kaempferol inhibits VEGF expression and in vitro angiogenesis through a novel ERK-NFkappaB-cMyc-p21 pathway.Food Chem.,130, 321–328.

    Article CAS PubMed PubMed Central  Google Scholar 

  35. Vogelstein, B. and Kinzler, K.W. (2004) Cancer genes and the pathways they control.Nat. Med.,10, 789–799.

    Article CAS PubMed  Google Scholar 

  36. Kang, G.Y., Lee, E.R., Kim, J.H., Jung, J.W., Lim, J., Kim, S.K., Cho, S.G. and Kim, K.P. (2009) Downregulation of PLK-1 expression in kaempferol-induced apoptosis of MCF-7 cells.Eur. J. Pharmacol.,611, 17–21.

    Article CAS PubMed  Google Scholar 

  37. Xu, W., Liu, J., Li, C., Wu, H.Z. and Liu, Y.W. (2008) Kaempferol-7-O-beta-D-glucoside (KG) isolated from Smilax china L. rhizome induces G2/M phase arrest and apoptosis on HeLa cells in a p53-independent manner.Cancer Lett.,264, 229–240.

    Article CAS PubMed  Google Scholar 

  38. Chen, H.J., Lin, C.M., Lee, C.Y., Shih, N.C., Peng, S.F., Tsuzuki, M., Amagaya, S., Huang, W.W. and Yang, J.S. (2013) Kaempferol suppresses cell metastasis via inhibition of the ERK-p38-JNK and AP-1 signaling pathways in U-2 OS human osteosarcoma cells.Oncol. Rep.,30, 925–932.

    Article CAS PubMed  Google Scholar 

  39. Martina, M., Clerici, M., Baldo, V., Bonetti, D., Lucchini, G. and Longhese, M.P. (2012) A balance between Tel1 and Rif2 activities regulates nucleolytic processing and elongation at telomeres.Mol. Cell Biol.,32, 1604–1617.

    Article CAS PubMed PubMed Central  Google Scholar 

  40. Majno, G. and Joris, I. (1995) Apoptosis, oncosis, and necrosis. An overview of cell death.Am. J. Pathol.,146, 3–15.

    CAS PubMed PubMed Central  Google Scholar 

  41. Edinger, A.L. and Thompson, C.B. (2004) Death by design: apoptosis, necrosis and autophagy.Curr. Opin. Cell Biol.,16, 663–669.

    Article CAS PubMed  Google Scholar 

  42. Fadok, V.A., Voelker, D.R., Campbell, P.A., Cohen, J.J., Bratton, D.L. and Henson, P.M. (1992) Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages.J. Immunol.,148, 2207–2216.

    CAS PubMed  Google Scholar 

  43. Kerr, J.F. (1971) Shrinkage necrosis: a distinct mode of cellular death.J. Pathol.,105, 13–20.

    Article CAS PubMed  Google Scholar 

  44. Kerr, J.F., Winterford, C.M. and Harmon, B.V. (1994) Apoptosis. Its significance in cancer and cancer therapy.Cancer,73, 2013–2026.

    Article CAS PubMed  Google Scholar 

  45. Kerr, J.F., Wyllie, A.H. and Currie, A.R. (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics.Br. J. Cancer,26, 239–257.

    Article CAS PubMed PubMed Central  Google Scholar 

  46. Singh, N.P. (2000) A simple method for accurate estimation of apoptotic cells.Exp. Cell Res.,256, 328–337.

    Article CAS PubMed  Google Scholar 

  47. Kelly, K.J., Sandoval, R.M., Dunn, K.W., Molitoris, B.A. and Dagher, P.C. (2003) A novel method to determine specificity and sensitivity of the TUNEL reaction in the quantitation of apoptosis.Am. J. Physiol. Cell Physiol.,284, C1309–1318.

    Article CAS PubMed  Google Scholar 

  48. Riccardi, C. and Nicoletti, I. (2006) Analysis of apoptosis by propidium iodide staining and flow cytometry.Nat. Protoc.,1, 1458–1461.

    Article CAS PubMed  Google Scholar 

  49. Loo, D.T. and Rillema, J.R. (1998) Measurement of cell death.Methods Cell Biol.,57, 251–264.

    Article CAS PubMed  Google Scholar 

  50. Thorburn, A. (2004) Death receptor-induced cell killing.Cell. Signalling,16, 139–144.

    Article CAS PubMed  Google Scholar 

  51. Kim, H.K., Park, H.R., Lee, J.S., Chung, T.S., Chung, H.Y. and Chung, J. (2007) Down-regulation of iNOS and TNF-alpha expression by kaempferol via NF-kappaB inactivation in aged rat gingival tissues.Biogerontology,8, 399–408.

    Article CAS PubMed  Google Scholar 

  52. Pang, J.L., Ricupero, D.A., Huang, S., Fatma, N., Singh, D.P., Romero, J.R. and Chattopadhyay, N. (2006) Differential activity of kaempferol and quercetin in attenuating tumor necrosis factor receptor family signaling in bone cells.Biochem. Pharmacol.,71, 818–826.

    Article CAS PubMed  Google Scholar 

  53. Jin, Z., McDonald, E.R. 3rd, Dicker, D.T. and El-Deiry, W.S. (2004) Deficient tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) death receptor transport to the cell surface in human colon cancer cells selected for resistance to TRAIL-induced apoptosis.J. Biol. Chem.,279, 35829–35839.

    Article CAS PubMed  Google Scholar 

  54. Yoshida, T., Konishi, M., Horinaka, M., Yasuda, T., Goda, A.E., Taniguchi, H., Yano, K., Wakada, M. and Sakai, T. (2008) Kaempferol sensitizes colon cancer cells to TRAIL-induced apoptosis.Biochem. Biophys. Res. Commun.,375, 129–133.

    Article CAS PubMed  Google Scholar 

  55. Siegelin, M.D., Reuss, D.E., Habel, A., Herold-Mende, C. and von Deimling, A. (2008) The flavonoid kaempferol sensitizes human glioma cells to TRAIL-mediated apoptosis by proteasomal degradation of survivin.Mol. Cancer Ther.,7, 3566–3574.

    Article CAS PubMed  Google Scholar 

  56. Deribe, Y.L., Pawson, T. and Dikic, I. (2010) Post-translational modifications in signal integration.Nat. Struct. Mol. Biol.,17, 666–672.

    Article CAS PubMed  Google Scholar 

  57. Alenzi, F.Q., Lotfy, M. and Wyse, R. (2010) Swords of cell death: caspase activation and regulation.Asian Pac. J. Cancer Prev.,11, 271–280.

    PubMed  Google Scholar 

  58. Bestwick, C.S., Milne, L. and Duthie, S.J. (2007) Kaempferol induced inhibition of HL-60 cell growth results from a heterogeneous response, dominated by cell cycle alterations.Chem. Biol. Interact.,170, 76–85.

    Article CAS PubMed  Google Scholar 

  59. Engel, T. and Henshall, D.C. (2009) Apoptosis, Bcl-2 family proteins and caspases: the ABCs of seizure-damage and epileptogenesis?Int. J. Physiol. Pathophysiol. Pharmacol.,1, 97–115.

    CAS PubMed PubMed Central  Google Scholar 

  60. Indran, I.R., Tufo, G., Pervaiz, S. and Brenner, C. (2011) Recent advances in apoptosis, mitochondria and drug resistance in cancer cells.Biochim. Biophys. Acta,1807, 735–745.

    Article CAS PubMed  Google Scholar 

  61. Nguyen, T.T., Tran, E., Ong, C.K., Lee, S.K., Do, P.T., Huynh, T.T., Nguyen, T.H., Lee, J.J., Tan, Y., Ong, C.S. and Huynh, H. (2003) Kaempferol-induced growth inhibition and apoptosis in A549 lung cancer cells is mediated by activation of MEK-MAPK.J. Cell. Physiol.,197, 110–121.

    Article CAS PubMed  Google Scholar 

  62. Kim, Y.M., Talanian, R.V. and Billiar, T.R. (1997) Nitric oxide inhibits apoptosis by preventing increases in caspase-3-like activity via two distinct mechanisms.J. Biol. Chem.,272, 31138–31148.

    Article CAS PubMed  Google Scholar 

  63. Cooper, C.E. (2002) Nitric oxide and cytochrome oxidase: substrate, inhibitor or effector?Trends Biochem. Sci.,27, 33–39.

    Article CAS PubMed  Google Scholar 

  64. Cook, J.A., Gius, D., Wink, D.A., Krishna, M.C., Russo, A. and Mitchell, J.B. (2004) Oxidative stress, redox, and the tumor microenvironment.Semin. Radiat. Oncol.,14, 259–266.

    Article PubMed  Google Scholar 

  65. Reade, M.C., Millo, J.L., Young, J.D. and Boyd, C.A. (2005) Nitric oxide synthase is downregulated, while haem oxygenase is increased, in patients with septic shock.Br. J. Anaesth.,94, 468–473.

    Article CAS PubMed  Google Scholar 

  66. García-Mediavilla, V., Crespo, I., Collado, P.S., Esteller, A., Sánchez-Campos, S., Tuñón, M.J. and González-Gallego, J. (2007) The anti-inflammatory flavones quercetin and kaempferol cause inhibition of inducible nitric oxide synthase, cyclooxygenase-2 and reactive C-protein, and down-regulation of the nuclear factor kappaB pathway in Chang Liver cells.Eur. J. Pharmacol.,557, 221–229.

    Article PubMed CAS  Google Scholar 

  67. Jiang, S., Cheng, R., Wang, X., Xue, T., Liu, Y., Nel, A., Huang, Y. and Duan, X. (2013) Real-time electrical detection of nitric oxide in biological systems with sub-nanomolar sensitivity.Nat. Commun.,4, 2225.

    Article PubMed CAS  Google Scholar 

  68. Rostoka, E., Baumane, L., Isajevs, S., Line, A., Dzintare, M., Svirina, D., Sharipova, J., Silina, K., Kalvinsh, I. and Sjakste, N. (2010) Effects of kaempferol and myricetin on inducible nitric oxide synthase expression and nitric oxide production in rats.Basic Clin. Pharmacol. Toxicol.,106, 461–466.

    Article CAS PubMed  Google Scholar 

  69. Boberg, J., Mandrup, K.R., Jacobsen, P.R., Isling, L.K., Hadrup, N., Berthelsen, L., Elleby, A., Kiersgaard, M., Vinggaard, A.M., Hass, U. and Nellemann, C. (2013) Endocrine disrupting effects in rats perinatally exposed to a dietary relevant mixture of phytoestrogens.Reprod. Toxicol.,40, 41–51.

    Article CAS PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Laboratory of Veterinary Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, 361-763, Korea

    Seung-Hee Kim & Kyung-Chul Choi

Authors
  1. Seung-Hee Kim

    You can also search for this author inPubMed Google Scholar

  2. Kyung-Chul Choi

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toKyung-Chul Choi.

Rights and permissions

This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Kim, SH., Choi, KC. Anti-cancer Effect and Underlying Mechanism(s) of Kaempferol, a Phytoestrogen, on the Regulation of Apoptosis in Diverse Cancer Cell Models.Toxicol Res.29, 229–234 (2013). https://doi.org/10.5487/TR.2013.29.4.229

Download citation

Key words

Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement


[8]ページ先頭

©2009-2025 Movatter.jp