Movatterモバイル変換


[0]ホーム

URL:


loading
PapersPapers/2022PapersPapers/2022

Scitepress Logo

The Search is performed on all of the following fields:

Note: Please use complete words only.
  • Publication Title
  • Abstract
  • Publication Keywords
  • DOI
  • Proceeding Title
  • Proceeding Foreword
  • ISBN (Completed)
  • Insticc Ontology
  • Author Affiliation
  • Author Name
  • Editor Name
If you already have a Primoris Account you can use the same username/password here.
Research.Publish.Connect.

The Search is performed on all of the following fields:

Note: Please use complete words only.
  • Publication Title
  • Abstract
  • Publication Keywords
  • DOI
  • Proceeding Title
  • Proceeding Foreword
  • ISBN (Completed)
  • Insticc Ontology
  • Author Affiliation
  • Author Name
  • Editor Name
If you're looking for an exact phrase use quotation marks on text fields.

Paper

Authors:Takahiro Mano;Reiji Saito andKazuhiro Hotta

Affiliation:Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya 468-8502, Japan

Keyword(s):Semi-Supervised Learning, Segmentation, SupMix, ClassMix.

Abstract:In semantic segmentation, the creation of pixel-level labels for training data incurs significant costs. To address this problem, semi-supervised learning, which utilizes a small number of labeled images alongside unlabeled images to enhance the performance, has gained attention. A conventional semi-supervised learning method, ClassMix, pastes class labels predicted from unlabeled images onto other images. However, since ClassMix performs operations using pseudo-labels obtained from unlabeled images, there is a risk of handling inaccurate labels. Additionally, there is a gap in data quality between labeled and unlabeled images, which can impact the feature maps. This study addresses these two issues. First, we propose a method where class labels from labeled images, along with the corresponding image regions, are pasted onto unlabeled images and their pseudo-labeled images. Second, we introduce a method that trains the model to make predictions on unlabeled images more similar to those on labeled images. Experiments on the Chase and COVID-19 datasets demonstrated an average improvement of 2.07% in mIoU compared to conventional semi-supervised learning methods.(More)

In semantic segmentation, the creation of pixel-level labels for training data incurs significant costs. To address this problem, semi-supervised learning, which utilizes a small number of labeled images alongside unlabeled images to enhance the performance, has gained attention. A conventional semi-supervised learning method, ClassMix, pastes class labels predicted from unlabeled images onto other images. However, since ClassMix performs operations using pseudo-labels obtained from unlabeled images, there is a risk of handling inaccurate labels. Additionally, there is a gap in data quality between labeled and unlabeled images, which can impact the feature maps. This study addresses these two issues. First, we propose a method where class labels from labeled images, along with the corresponding image regions, are pasted onto unlabeled images and their pseudo-labeled images. Second, we introduce a method that trains the model to make predictions on unlabeled images more similar to those on labeled images. Experiments on the Chase and COVID-19 datasets demonstrated an average improvement of 2.07% in mIoU compared to conventional semi-supervised learning methods.

Full Text

Download
Please type the code

CC BY-NC-ND 4.0

Sign In

Guests can use SciTePress Digital Library without having a SciTePress account. However, guests have limited access to downloading full text versions of papers and no access to special options.
Guests can use SciTePress Digital Library without having a SciTePress account. However, guests have limited access to downloading full text versions of papers and no access to special options.
Guest:Register as new SciTePress user now for free.

Sign In

Download limit per month - 500 recent papers or 4000 papers more than 2 years old.
SciTePress user: please login.

PDF ImageMy Papers

PopUp Banner

Unable to see papers previously downloaded, because you haven't logged in as SciTePress Member.

If you are already a member please login.
You are not signed in, therefore limits apply to your IP address 153.126.140.213

In the current month:
Recent papers: 100 available of 100 total
2+ years older papers: 200 available of 200 total
Popup Banner

PDF ButtonFull Text

Download
Please type the code

Paper citation in several formats:
Mano, T., Saito, R. and Hotta, K. (2025).Accuracy Improvement of Semi-Supervised Segmentation Using Supervised ClassMix and Sup-Unsup Feature Discriminator. InProceedings of the 20th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 3: VISAPP; ISBN 978-989-758-728-3; ISSN 2184-4321, SciTePress, pages 592-600. DOI: 10.5220/0013222700003912

@conference{visapp25,
author={Takahiro Mano and Reiji Saito and Kazuhiro Hotta},
title={Accuracy Improvement of Semi-Supervised Segmentation Using Supervised ClassMix and Sup-Unsup Feature Discriminator},
booktitle={Proceedings of the 20th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 3: VISAPP},
year={2025},
pages={592-600},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0013222700003912},
isbn={978-989-758-728-3},
issn={2184-4321},
}

TY - CONF

JO - Proceedings of the 20th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 3: VISAPP
TI - Accuracy Improvement of Semi-Supervised Segmentation Using Supervised ClassMix and Sup-Unsup Feature Discriminator
SN - 978-989-758-728-3
IS - 2184-4321
AU - Mano, T.
AU - Saito, R.
AU - Hotta, K.
PY - 2025
SP - 592
EP - 600
DO - 10.5220/0013222700003912
PB - SciTePress

    - Science and Technology Publications, Lda.
    RESOURCES

    Proceedings

    Papers

    Authors

    Ontology

    CONTACTS

    Science and Technology Publications, Lda
    Avenida de S. Francisco Xavier, Lote 7 Cv. C,
    2900-616 Setúbal, Portugal.

    Phone: +351 265 520 185(National fixed network call)
    Fax: +351 265 520 186
    Email:info@scitepress.org

    EXTERNAL LINKS

    PRIMORIS

    INSTICC

    SCITEVENTS

    CROSSREF

    PROCEEDINGS SUBMITTED FOR INDEXATION BY:

    dblp

    Ei Compendex

    SCOPUS

    Semantic Scholar

    Google Scholar

    Microsoft Academic


    [8]
    ページ先頭

    ©2009-2025 Movatter.jp