Movatterモバイル変換


[0]ホーム

URL:


loading
PapersPapers/2022PapersPapers/2022

Scitepress Logo

The Search is performed on all of the following fields:

Note: Please use complete words only.
  • Publication Title
  • Abstract
  • Publication Keywords
  • DOI
  • Proceeding Title
  • Proceeding Foreword
  • ISBN (Completed)
  • Insticc Ontology
  • Author Affiliation
  • Author Name
  • Editor Name
If you already have a Primoris Account you can use the same username/password here.
Research.Publish.Connect.

The Search is performed on all of the following fields:

Note: Please use complete words only.
  • Publication Title
  • Abstract
  • Publication Keywords
  • DOI
  • Proceeding Title
  • Proceeding Foreword
  • ISBN (Completed)
  • Insticc Ontology
  • Author Affiliation
  • Author Name
  • Editor Name
If you're looking for an exact phrase use quotation marks on text fields.

Paper

Authors:Wanyu Hu andVrizlynn Thing

Affiliation:ST Engineering, Singapore

Keyword(s):National Vulnerability Database (NVD), Common Vulnerabilities and Exposures (CVE), Common Platform Enumeration (CPE), Named Entity Recognition (NER), Natural Language Processing (NLP).

Abstract:With the drastic increase in the number of new vulnerabilities in the National Vulnerability Database (NVD) every year, the workload for NVD analysts to associate the Common Platform Enumeration (CPE) with the Common Vulnerabilities and Exposures (CVE) summaries becomes increasingly laborious and slow. The delay causes organisations, which depend on NVD for vulnerability management and security measurement, to be more vulnerable to zero-day attacks. Thus, it is essential to come out with a technique and tool to extract the CPEs in the CVE summaries accurately and quickly. In this work, we propose the CPE-Identifier system, an automated CPE annotating and extracting system, from the CVE summaries. The system can be used as a tool to identify CPE entities from new CVE text inputs. Moreover, we also automate the data generating and labeling processes using deep learning models. Due to the complexity of the CVE texts, new technical terminologies appear frequently. To identify novel words in future CVE texts, we apply Natural Language Processing (NLP) Named Entity Recognition (NER), to identify new technical jargons in the text. Our proposed model achieves an F1 score of 95.48%, an accuracy score of 99.13%, a precision of 94.83%, and a recall of 96.14%. We show that it outperforms prior works on automated CVE-CPE labeling by more than 9% on all metrics.(More)

With the drastic increase in the number of new vulnerabilities in the National Vulnerability Database (NVD) every year, the workload for NVD analysts to associate the Common Platform Enumeration (CPE) with the Common Vulnerabilities and Exposures (CVE) summaries becomes increasingly laborious and slow. The delay causes organisations, which depend on NVD for vulnerability management and security measurement, to be more vulnerable to zero-day attacks. Thus, it is essential to come out with a technique and tool to extract the CPEs in the CVE summaries accurately and quickly. In this work, we propose the CPE-Identifier system, an automated CPE annotating and extracting system, from the CVE summaries. The system can be used as a tool to identify CPE entities from new CVE text inputs. Moreover, we also automate the data generating and labeling processes using deep learning models. Due to the complexity of the CVE texts, new technical terminologies appear frequently. To identify novel words in future CVE texts, we apply Natural Language Processing (NLP) Named Entity Recognition (NER), to identify new technical jargons in the text. Our proposed model achieves an F1 score of 95.48%, an accuracy score of 99.13%, a precision of 94.83%, and a recall of 96.14%. We show that it outperforms prior works on automated CVE-CPE labeling by more than 9% on all metrics.

Full Text

Download
Please type the code

CC BY-NC-ND 4.0

Sign In

Guests can use SciTePress Digital Library without having a SciTePress account. However, guests have limited access to downloading full text versions of papers and no access to special options.
Guests can use SciTePress Digital Library without having a SciTePress account. However, guests have limited access to downloading full text versions of papers and no access to special options.
Guest:Register as new SciTePress user now for free.

Sign In

Download limit per month - 500 recent papers or 4000 papers more than 2 years old.
SciTePress user: please login.

PDF ImageMy Papers

PopUp Banner

Unable to see papers previously downloaded, because you haven't logged in as SciTePress Member.

If you are already a member please login.
You are not signed in, therefore limits apply to your IP address 153.126.140.213

In the current month:
Recent papers: 100 available of 100 total
2+ years older papers: 200 available of 200 total
Popup Banner

PDF ButtonFull Text

Download
Please type the code

Paper citation in several formats:
Hu, W. and Thing, V. (2024).CPE-Identifier: Automated CPE Identification and CVE Summaries Annotation with Deep Learning and NLP. InProceedings of the 10th International Conference on Information Systems Security and Privacy - ICISSP; ISBN 978-989-758-683-5; ISSN 2184-4356, SciTePress, pages 67-78. DOI: 10.5220/0012403500003648

@conference{icissp24,
author={Wanyu Hu and Vrizlynn Thing},
title={CPE-Identifier: Automated CPE Identification and CVE Summaries Annotation with Deep Learning and NLP},
booktitle={Proceedings of the 10th International Conference on Information Systems Security and Privacy - ICISSP},
year={2024},
pages={67-78},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0012403500003648},
isbn={978-989-758-683-5},
issn={2184-4356},
}

TY - CONF

JO - Proceedings of the 10th International Conference on Information Systems Security and Privacy - ICISSP
TI - CPE-Identifier: Automated CPE Identification and CVE Summaries Annotation with Deep Learning and NLP
SN - 978-989-758-683-5
IS - 2184-4356
AU - Hu, W.
AU - Thing, V.
PY - 2024
SP - 67
EP - 78
DO - 10.5220/0012403500003648
PB - SciTePress

    - Science and Technology Publications, Lda.
    RESOURCES

    Proceedings

    Papers

    Authors

    Ontology

    CONTACTS

    Science and Technology Publications, Lda
    Avenida de S. Francisco Xavier, Lote 7 Cv. C,
    2900-616 Setúbal, Portugal.

    Phone: +351 265 520 185(National fixed network call)
    Fax: +351 265 520 186
    Email:info@scitepress.org

    EXTERNAL LINKS

    PRIMORIS

    INSTICC

    SCITEVENTS

    CROSSREF

    PROCEEDINGS SUBMITTED FOR INDEXATION BY:

    dblp

    Ei Compendex

    SCOPUS

    Semantic Scholar

    Google Scholar

    Microsoft Academic


    [8]
    ページ先頭

    ©2009-2025 Movatter.jp