Movatterモバイル変換


[0]ホーム

URL:


loading
PapersPapers/2022PapersPapers/2022

Scitepress Logo

The Search is performed on all of the following fields:

Note: Please use complete words only.
  • Publication Title
  • Abstract
  • Publication Keywords
  • DOI
  • Proceeding Title
  • Proceeding Foreword
  • ISBN (Completed)
  • Insticc Ontology
  • Author Affiliation
  • Author Name
  • Editor Name
If you already have a Primoris Account you can use the same username/password here.
Research.Publish.Connect.

The Search is performed on all of the following fields:

Note: Please use complete words only.
  • Publication Title
  • Abstract
  • Publication Keywords
  • DOI
  • Proceeding Title
  • Proceeding Foreword
  • ISBN (Completed)
  • Insticc Ontology
  • Author Affiliation
  • Author Name
  • Editor Name
If you're looking for an exact phrase use quotation marks on text fields.

Paper

Authors:Haruki Fujii andKazuhiro Hotta

Affiliation:Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya 468-8502, Japan

Keyword(s):Adaptive Resolution Selection, Small Objects, Semantic Segmentation, Cell Images, Medical Images.

Abstract:This paper proposes a segmentation method using adaptive resolution selection for improving the accuracy of small objects. In semantic segmentation, the segmentation of small objects is more difficult than that of large objects. Semantic segmentation requires both spatial details to locate objects and strong semantics to classify objects well, which are likely to exist at different resolution/scale levels. We believe that small objects are well represented by high-resolution feature maps, while large objects are suitable for low-resolution feature maps with high semantic information, and propose a method to automatically select a resolution and assign it to each object in the HRNet with multi-resolution feature maps. We propose Adaptive Resolution Selection Module (ARSM), which selects the resolution for segmentation of each class. The proposed method considers the feature map of each resolution in the HRNet as an Expert Network, and a Gating Network selects adequate resolution for each class. We conducted experiments on Drosophila cell images and the Covid 19 dataset, and confirmed that the proposed method achieved higher accuracy than the conventional method.(More)

This paper proposes a segmentation method using adaptive resolution selection for improving the accuracy of small objects. In semantic segmentation, the segmentation of small objects is more difficult than that of large objects. Semantic segmentation requires both spatial details to locate objects and strong semantics to classify objects well, which are likely to exist at different resolution/scale levels. We believe that small objects are well represented by high-resolution feature maps, while large objects are suitable for low-resolution feature maps with high semantic information, and propose a method to automatically select a resolution and assign it to each object in the HRNet with multi-resolution feature maps. We propose Adaptive Resolution Selection Module (ARSM), which selects the resolution for segmentation of each class. The proposed method considers the feature map of each resolution in the HRNet as an Expert Network, and a Gating Network selects adequate resolution for each class. We conducted experiments on Drosophila cell images and the Covid 19 dataset, and confirmed that the proposed method achieved higher accuracy than the conventional method.

Full Text

Download
Please type the code

CC BY-NC-ND 4.0

Sign In

Guests can use SciTePress Digital Library without having a SciTePress account. However, guests have limited access to downloading full text versions of papers and no access to special options.
Guests can use SciTePress Digital Library without having a SciTePress account. However, guests have limited access to downloading full text versions of papers and no access to special options.
Guest:Register as new SciTePress user now for free.

Sign In

Download limit per month - 500 recent papers or 4000 papers more than 2 years old.
SciTePress user: please login.

PDF ImageMy Papers

PopUp Banner

Unable to see papers previously downloaded, because you haven't logged in as SciTePress Member.

If you are already a member please login.
You are not signed in, therefore limits apply to your IP address 153.126.140.213

In the current month:
Recent papers: 100 available of 100 total
2+ years older papers: 200 available of 200 total
Popup Banner

PDF ButtonFull Text

Download
Please type the code

Paper citation in several formats:
Fujii, H. and Hotta, K. (2023).Adaptive Resolution Selection for Improving Segmentation Accuracy of Small Objects. InProceedings of the 18th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2023) - Volume 4: VISAPP; ISBN 978-989-758-634-7; ISSN 2184-4321, SciTePress, pages 393-400. DOI: 10.5220/0011736800003417

@conference{visapp23,
author={Haruki Fujii and Kazuhiro Hotta},
title={Adaptive Resolution Selection for Improving Segmentation Accuracy of Small Objects},
booktitle={Proceedings of the 18th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2023) - Volume 4: VISAPP},
year={2023},
pages={393-400},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0011736800003417},
isbn={978-989-758-634-7},
issn={2184-4321},
}

TY - CONF

JO - Proceedings of the 18th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2023) - Volume 4: VISAPP
TI - Adaptive Resolution Selection for Improving Segmentation Accuracy of Small Objects
SN - 978-989-758-634-7
IS - 2184-4321
AU - Fujii, H.
AU - Hotta, K.
PY - 2023
SP - 393
EP - 400
DO - 10.5220/0011736800003417
PB - SciTePress

    - Science and Technology Publications, Lda.
    RESOURCES

    Proceedings

    Papers

    Authors

    Ontology

    CONTACTS

    Science and Technology Publications, Lda
    Avenida de S. Francisco Xavier, Lote 7 Cv. C,
    2900-616 Setúbal, Portugal.

    Phone: +351 265 520 185(National fixed network call)
    Fax: +351 265 520 186
    Email:info@scitepress.org

    EXTERNAL LINKS

    PRIMORIS

    INSTICC

    SCITEVENTS

    CROSSREF

    PROCEEDINGS SUBMITTED FOR INDEXATION BY:

    dblp

    Ei Compendex

    SCOPUS

    Semantic Scholar

    Google Scholar

    Microsoft Academic


    [8]
    ページ先頭

    ©2009-2025 Movatter.jp