Movatterモバイル変換


[0]ホーム

URL:


loading
PapersPapers/2022PapersPapers/2022

Scitepress Logo

The Search is performed on all of the following fields:

Note: Please use complete words only.
  • Publication Title
  • Abstract
  • Publication Keywords
  • DOI
  • Proceeding Title
  • Proceeding Foreword
  • ISBN (Completed)
  • Insticc Ontology
  • Author Affiliation
  • Author Name
  • Editor Name
If you already have a Primoris Account you can use the same username/password here.
Research.Publish.Connect.

The Search is performed on all of the following fields:

Note: Please use complete words only.
  • Publication Title
  • Abstract
  • Publication Keywords
  • DOI
  • Proceeding Title
  • Proceeding Foreword
  • ISBN (Completed)
  • Insticc Ontology
  • Author Affiliation
  • Author Name
  • Editor Name
If you're looking for an exact phrase use quotation marks on text fields.

Paper

Paper Unlock

Authors:Johannes Wolf;Rico Richter andJürgen Döllner

Affiliation:Hasso Plattner Institute, Faculty of Digital Engineering, University of Potsdam, Germany

Keyword(s):LiDAR, 3D Point Clouds, Digital Image Analysis, Semantic Classification.

Abstract:This work presents an approach for the automated detection of railroad assets in 3D point clouds from mobile mapping LiDAR scans using established convolutional neural networks for image analysis. It describes how images of individual scan lines can be generated from 3D point clouds. In these scan lines, objects such as tracks, signal posts, and axle counters can be detected using artificial neural networks for image analysis, previously trained on ground-truth data. The recognition results can then be transferred back to the 3D point cloud as a semantic classification result, or they are used to generate geometry or map data for further processing in GIS applications. Using this approach, trained objects can be found with high automation. Challenges such as varying point density, different data characteristics of scanning devices, and the massive amount of data can be overcome with this approach.

Full Text

Download
Please type the code

CC BY-NC-ND 4.0

Sign In

Guests can use SciTePress Digital Library without having a SciTePress account. However, guests have limited access to downloading full text versions of papers and no access to special options.
Guests can use SciTePress Digital Library without having a SciTePress account. However, guests have limited access to downloading full text versions of papers and no access to special options.
Guest:Register as new SciTePress user now for free.

Sign In

Download limit per month - 500 recent papers or 4000 papers more than 2 years old.
SciTePress user: please login.

PDF ImageMy Papers

PopUp Banner

Unable to see papers previously downloaded, because you haven't logged in as SciTePress Member.

If you are already a member please login.
You are not signed in, therefore limits apply to your IP address 153.126.140.213

In the current month:
Recent papers: 100 available of 100 total
2+ years older papers: 200 available of 200 total
Popup Banner

PDF ButtonFull Text

Download
Please type the code

Paper citation in several formats:
Wolf, J., Richter, R. and Döllner, J. (2021).Asset Detection in Railroad Environments using Deep Learning-based Scanline Analysis. InProceedings of the 16th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2021) - Volume 4: VISAPP; ISBN 978-989-758-488-6; ISSN 2184-4321, SciTePress, pages 465-470. DOI: 10.5220/0010314704650470

@conference{visapp21,
author={Johannes Wolf and Rico Richter and Jürgen Döllner},
title={Asset Detection in Railroad Environments using Deep Learning-based Scanline Analysis},
booktitle={Proceedings of the 16th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2021) - Volume 4: VISAPP},
year={2021},
pages={465-470},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0010314704650470},
isbn={978-989-758-488-6},
issn={2184-4321},
}

TY - CONF

JO - Proceedings of the 16th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2021) - Volume 4: VISAPP
TI - Asset Detection in Railroad Environments using Deep Learning-based Scanline Analysis
SN - 978-989-758-488-6
IS - 2184-4321
AU - Wolf, J.
AU - Richter, R.
AU - Döllner, J.
PY - 2021
SP - 465
EP - 470
DO - 10.5220/0010314704650470
PB - SciTePress

    - Science and Technology Publications, Lda.
    RESOURCES

    Proceedings

    Papers

    Authors

    Ontology

    CONTACTS

    Science and Technology Publications, Lda
    Avenida de S. Francisco Xavier, Lote 7 Cv. C,
    2900-616 Setúbal, Portugal.

    Phone: +351 265 520 185(National fixed network call)
    Fax: +351 265 520 186
    Email:info@scitepress.org

    EXTERNAL LINKS

    PRIMORIS

    INSTICC

    SCITEVENTS

    CROSSREF

    PROCEEDINGS SUBMITTED FOR INDEXATION BY:

    dblp

    Ei Compendex

    SCOPUS

    Semantic Scholar

    Google Scholar

    Microsoft Academic


    [8]
    ページ先頭

    ©2009-2025 Movatter.jp