Movatterモバイル変換


[0]ホーム

URL:


Geoscientific Model Development
Geoscientific Model Development
GMD
 

Article 

  1. Articles
  2. Volume 10, issue 5
  3. GMD, 10, 1903–1925, 2017

Multiple terms: term1 term2
red apples
returns results with all terms like:
Fructose levels inred andgreen apples

Precise match in quotes: "term1 term2"
"red apples"
returns results matching exactly like:
Anthocyanin biosynthesis inred apples

Exclude a term with -: term1 -term2
apples -red
returns results containingapples but notred:
Malic acid in greenapples

Articles |Volume 10, issue 5
https://doi.org/10.5194/gmd-10-1903-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/gmd-10-1903-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Model description paper
 | 
17 May 2017
Model description paper | | 17 May 2017

GLEAM v3: satellite-based land evaporation and root-zone soil moisture

Brecht Martens,Diego G. Miralles,Hans Lievens,Robin van der Schalie,Richard A. M. de Jeu,Diego Fernández-Prieto,Hylke E. Beck,Wouter A. Dorigo,andNiko E. C. Verhoest

Abstract. The Global Land Evaporation Amsterdam Model (GLEAM) is a set of algorithms dedicated to the estimation of terrestrial evaporation and root-zone soil moisture from satellite data. Ever since its development in 2011, the model has been regularly revised, aiming at the optimal incorporation of new satellite-observed geophysical variables, and improving the representation of physical processes. In this study, the next version of this model (v3) is presented. Key changes relative to the previous version include (1) a revised formulation of the evaporative stress, (2) an optimized drainage algorithm, and (3) a new soil moisture data assimilation system. GLEAM v3 is used to produce three new data sets of terrestrial evaporation and root-zone soil moisture, including a 36-year data set spanning 1980–2015, referred to as v3a (based on satellite-observed soil moisture, vegetation optical depth and snow-water equivalent, reanalysis air temperature and radiation, and a multi-source precipitation product), and two satellite-based data sets. The latter share most of their forcing, except for the vegetation optical depth and soil moisture, which are based on observations from different passive and active C- and L-band microwave sensors (European Space Agency Climate Change Initiative, ESA CCI) for the v3b data set (spanning 2003–2015) and observations from the Soil Moisture and Ocean Salinity (SMOS) satellite in the v3c data set (spanning 2011–2015). Here, these three data sets are described in detail, compared against analogous data sets generated using the previous version of GLEAM (v2), and validated against measurements from 91 eddy-covariance towers and 2325 soil moisture sensors across a broad range of ecosystems. Results indicate that the quality of the v3 soil moisture is consistently better than the one from v2: average correlations against in situ surface soil moisture measurements increase from 0.61 to 0.64 in the case of the v3a data set and the representation of soil moisture in the second layer improves as well, with correlations increasing from 0.47 to 0.53. Similar improvements are observed for the v3b and c data sets. Despite regional differences, the quality of the evaporation fluxes remains overall similar to the one obtained using the previous version of GLEAM, with average correlations against eddy-covariance measurements ranging between 0.78 and 0.81 for the different data sets. These global data sets of terrestrial evaporation and root-zone soil moisture are now openly available atwww.GLEAM.eu and may be used for large-scale hydrological applications, climate studies, or research on land–atmosphere feedbacks.

Download & links
Download & links
Share
Mendeley
Reddit
Twitter
Facebook
LinkedIn
How to cite. Martens, B., Miralles, D. G., Lievens, H., van der Schalie, R., de Jeu, R. A. M., Fernández-Prieto, D., Beck, H. E., Dorigo, W. A., and Verhoest, N. E. C.: GLEAM v3: satellite-based land evaporation and root-zone soil moisture, Geosci. Model Dev., 10, 1903–1925, https://doi.org/10.5194/gmd-10-1903-2017, 2017.
Received: 24 Jun 2016Discussion started: 05 Aug 2016Revised: 08 Mar 2017Accepted: 20 Apr 2017Published: 17 May 2017
Download
Short summary
Terrestrial evaporation is a key component of the hydrological cycle and reliable data sets of this variable are of major importance. The Global Land Evaporation Amsterdam Model (GLEAM,www.GLEAM.eu) is a set of algorithms which estimates evaporation based on satellite observations. The third version of GLEAM, presented in this study, includes an improved parameterization of different model components. As a result, the accuracy of the GLEAM data sets has been improved upon previous versions.
Terrestrial evaporation is a key component of the hydrological cycle and reliable data sets of...
Share
Mendeley
Reddit
Twitter
Facebook
LinkedIn

[8]ページ先頭

©2009-2025 Movatter.jp