Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Cornell University
We gratefully acknowledge support from the Simons Foundation,member institutions, and all contributors.Donate
arxiv logo>cs> arXiv:2502.14829
arXiv logo
Cornell University Logo

Computer Science > Computation and Language

arXiv:2502.14829 (cs)
[Submitted on 20 Feb 2025]

Title:Measuring Faithfulness of Chains of Thought by Unlearning Reasoning Steps

View PDFHTML (experimental)
Abstract:When prompted to think step-by-step, language models (LMs) produce a chain of thought (CoT), a sequence of reasoning steps that the model supposedly used to produce its prediction. However, despite much work on CoT prompting, it is unclear if CoT reasoning is faithful to the models' parameteric beliefs. We introduce a framework for measuring parametric faithfulness of generated reasoning, and propose Faithfulness by Unlearning Reasoning steps (FUR), an instance of this framework. FUR erases information contained in reasoning steps from model parameters. We perform experiments unlearning CoTs of four LMs prompted on four multi-choice question answering (MCQA) datasets. Our experiments show that FUR is frequently able to change the underlying models' prediction by unlearning key steps, indicating when a CoT is parametrically faithful. Further analysis shows that CoTs generated by models post-unlearning support different answers, hinting at a deeper effect of unlearning. Importantly, CoT steps identified as important by FUR do not align well with human notions of plausbility, emphasizing the need for specialized alignment
Subjects:Computation and Language (cs.CL)
Cite as:arXiv:2502.14829 [cs.CL]
 (orarXiv:2502.14829v1 [cs.CL] for this version)
 https://doi.org/10.48550/arXiv.2502.14829
arXiv-issued DOI via DataCite

Submission history

From: Martin Tutek [view email]
[v1] Thu, 20 Feb 2025 18:45:05 UTC (920 KB)
Full-text links:

Access Paper:

Current browse context:
cs.CL
Change to browse by:
export BibTeX citation

Bookmark

BibSonomy logoReddit logo

Bibliographic and Citation Tools

Bibliographic Explorer(What is the Explorer?)
Connected Papers(What is Connected Papers?)
scite Smart Citations(What are Smart Citations?)

Code, Data and Media Associated with this Article

CatalyzeX Code Finder for Papers(What is CatalyzeX?)
Hugging Face(What is Huggingface?)
Papers with Code(What is Papers with Code?)

Demos

Hugging Face Spaces(What is Spaces?)

Recommenders and Search Tools

Influence Flower(What are Influence Flowers?)
CORE Recommender(What is CORE?)

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community?Learn more about arXivLabs.

Which authors of this paper are endorsers? |Disable MathJax (What is MathJax?)

[8]ページ先頭

©2009-2025 Movatter.jp