Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Cornell University

Monday, May 5: arXiv will be READ ONLY at 9:00AM EST for approximately 30 minutes. We apologize for any inconvenience.

We gratefully acknowledge support from the Simons Foundation,member institutions, and all contributors.Donate
arxiv logo>cs> arXiv:2502.13329
arXiv logo
Cornell University Logo

Computer Science > Computation and Language

arXiv:2502.13329 (cs)
[Submitted on 18 Feb 2025]

Title:Language Models Can Predict Their Own Behavior

View PDFHTML (experimental)
Abstract:Autoregressive Language Models output text by sequentially predicting the next token to generate, with modern methods like Chain-of-Thought (CoT) prompting achieving state-of-the-art reasoning capabilities by scaling the number of generated tokens. However, are there times when we can infer how the model will behave (e.g. abstain from answering a question) early in the computation, making generation unnecessary? We show that internal representation of input tokens alone can often precisely predict, not just the next token, but eventual behavior over the entire output sequence. We leverage this capacity and learn probes on internal states to create early warning (and exit) systems. Specifically, if the probes can confidently estimate the way the LM is going to behave, then the system will avoid generating tokens altogether and return the estimated behavior instead. On 27 text classification datasets spanning five different tasks, we apply this method to estimate the eventual answer of an LM under CoT prompting, reducing inference costs by 65% (average) while suffering an accuracy loss of no more than 1.4% (worst case). We demonstrate the potential of this method to pre-emptively identify when a model will abstain from answering a question, fail to follow output format specifications, or give a low-confidence response. We explore the limits of this capability, showing that probes generalize to unseen datasets, but perform worse when LM outputs are longer and struggle to predict properties that require access to knowledge that the models themselves lack. Encouragingly, performance scales with model size, suggesting applicability to the largest of models
Subjects:Computation and Language (cs.CL); Artificial Intelligence (cs.AI); Machine Learning (cs.LG)
Cite as:arXiv:2502.13329 [cs.CL]
 (orarXiv:2502.13329v1 [cs.CL] for this version)
 https://doi.org/10.48550/arXiv.2502.13329
arXiv-issued DOI via DataCite

Submission history

From: Dhananjay Ashok [view email]
[v1] Tue, 18 Feb 2025 23:13:16 UTC (402 KB)
Full-text links:

Access Paper:

Current browse context:
cs.CL
Change to browse by:
export BibTeX citation

Bookmark

BibSonomy logoReddit logo

Bibliographic and Citation Tools

Bibliographic Explorer(What is the Explorer?)
Connected Papers(What is Connected Papers?)
scite Smart Citations(What are Smart Citations?)

Code, Data and Media Associated with this Article

CatalyzeX Code Finder for Papers(What is CatalyzeX?)
Hugging Face(What is Huggingface?)
Papers with Code(What is Papers with Code?)

Demos

Hugging Face Spaces(What is Spaces?)

Recommenders and Search Tools

Influence Flower(What are Influence Flowers?)
CORE Recommender(What is CORE?)

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community?Learn more about arXivLabs.

Which authors of this paper are endorsers? |Disable MathJax (What is MathJax?)

[8]ページ先頭

©2009-2025 Movatter.jp