Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Cornell University
We gratefully acknowledge support from the Simons Foundation,member institutions, and all contributors.Donate
arxiv logo>cs> arXiv:2502.07634
arXiv logo
Cornell University Logo

Computer Science > Machine Learning

arXiv:2502.07634 (cs)
[Submitted on 7 Dec 2024]

Title:Efficient Distributed Training through Gradient Compression with Sparsification and Quantization Techniques

View PDF
Abstract:This study investigates the impact of gradient compression on distributed training performance, focusing on sparsification and quantization techniques, including top-k, DGC, and QSGD. In baseline experiments, random-k compression results in severe performance degradation, highlighting its inefficacy. In contrast, using top-k and DGC at 50 times compression yields performance improvements, reducing perplexity by up to 0.06 compared to baseline. Experiments across 1, 2, and 4 workers demonstrate that conservative sparsification can have a regularizing effect, especially for smaller models, while compression ratios above 5000 times impair performance, particularly for DGC. Communication times are reduced across all compression methods, with top-k and DGC decreasing communication to negligible levels at high compression ratios. However, increased computation times offset this efficiency for top-k due to sorting demands, making it less scalable than DGC or QSGD. In convergence tests, sparsification techniques show accelerated convergence, requiring fewer epochs than the baseline, which has implications for computational savings. Although precision trade-offs emerge, floating point errors are mitigated by compression. This study's findings underscore the need to tune hyperparameters specifically for each compression technique to achieve optimal model performance, especially in distributed training systems.
Subjects:Machine Learning (cs.LG); Multimedia (cs.MM)
Cite as:arXiv:2502.07634 [cs.LG]
 (orarXiv:2502.07634v1 [cs.LG] for this version)
 https://doi.org/10.48550/arXiv.2502.07634
arXiv-issued DOI via DataCite

Submission history

From: Shantanu Kumar [view email]
[v1] Sat, 7 Dec 2024 22:55:55 UTC (1,482 KB)
Full-text links:

Access Paper:

  • View PDF
  • Other Formats
Current browse context:
cs.LG
Change to browse by:
export BibTeX citation

Bookmark

BibSonomy logoReddit logo

Bibliographic and Citation Tools

Bibliographic Explorer(What is the Explorer?)
Connected Papers(What is Connected Papers?)
scite Smart Citations(What are Smart Citations?)

Code, Data and Media Associated with this Article

CatalyzeX Code Finder for Papers(What is CatalyzeX?)
Hugging Face(What is Huggingface?)
Papers with Code(What is Papers with Code?)

Demos

Hugging Face Spaces(What is Spaces?)

Recommenders and Search Tools

Influence Flower(What are Influence Flowers?)
CORE Recommender(What is CORE?)
IArxiv Recommender(What is IArxiv?)

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community?Learn more about arXivLabs.

Which authors of this paper are endorsers? |Disable MathJax (What is MathJax?)

[8]ページ先頭

©2009-2025 Movatter.jp