Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Cornell University
We gratefully acknowledge support from the Simons Foundation,member institutions, and all contributors.Donate
arxiv logo>cs> arXiv:2412.20682
arXiv logo
Cornell University Logo

Computer Science > Computer Vision and Pattern Recognition

arXiv:2412.20682 (cs)
[Submitted on 30 Dec 2024]

Title:Learning to Rank Pre-trained Vision-Language Models for Downstream Tasks

View PDFHTML (experimental)
Abstract:Vision language models (VLMs) like CLIP show stellar zero-shot capability on classification benchmarks. However, selecting the VLM with the highest performance on the unlabeled downstream task is non-trivial. Existing VLM selection methods focus on the class-name-only setting, relying on a supervised large-scale dataset and large language models, which may not be accessible or feasible during deployment. This paper introduces the problem of \textbf{unsupervised vision-language model selection}, where only unsupervised downstream datasets are available, with no additional information provided. To solve this problem, we propose a method termed Visual-tExtual Graph Alignment (VEGA), to select VLMs without any annotations by measuring the alignment of the VLM between the two modalities on the downstream task. VEGA is motivated by the pretraining paradigm of VLMs, which aligns features with the same semantics from the visual and textual modalities, thereby mapping both modalities into a shared representation space. Specifically, we first construct two graphs on the vision and textual features, respectively. VEGA is then defined as the overall similarity between the visual and textual graphs at both node and edge levels. Extensive experiments across three different benchmarks, covering a variety of application scenarios and downstream datasets, demonstrate that VEGA consistently provides reliable and accurate estimates of VLMs' performance on unlabeled downstream tasks.
Subjects:Computer Vision and Pattern Recognition (cs.CV); Machine Learning (cs.LG)
Cite as:arXiv:2412.20682 [cs.CV]
 (orarXiv:2412.20682v1 [cs.CV] for this version)
 https://doi.org/10.48550/arXiv.2412.20682
arXiv-issued DOI via DataCite

Submission history

From: Yuhe Ding [view email]
[v1] Mon, 30 Dec 2024 03:26:53 UTC (6,081 KB)
Full-text links:

Access Paper:

Current browse context:
cs.CV
Change to browse by:
export BibTeX citation

Bookmark

BibSonomy logoReddit logo

Bibliographic and Citation Tools

Bibliographic Explorer(What is the Explorer?)
Connected Papers(What is Connected Papers?)
scite Smart Citations(What are Smart Citations?)

Code, Data and Media Associated with this Article

CatalyzeX Code Finder for Papers(What is CatalyzeX?)
Hugging Face(What is Huggingface?)
Papers with Code(What is Papers with Code?)

Demos

Hugging Face Spaces(What is Spaces?)

Recommenders and Search Tools

Influence Flower(What are Influence Flowers?)
CORE Recommender(What is CORE?)

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community?Learn more about arXivLabs.

Which authors of this paper are endorsers? |Disable MathJax (What is MathJax?)

[8]ページ先頭

©2009-2025 Movatter.jp