Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Cornell University
We gratefully acknowledge support from the Simons Foundation,member institutions, and all contributors.Donate
arxiv logo>cs> arXiv:2412.10198
arXiv logo
Cornell University Logo

Computer Science > Cryptography and Security

arXiv:2412.10198 (cs)
[Submitted on 13 Dec 2024 (v1), last revised 7 Feb 2025 (this version, v2)]

Title:From Allies to Adversaries: Manipulating LLM Tool-Calling through Adversarial Injection

View PDFHTML (experimental)
Abstract:Tool-calling has changed Large Language Model (LLM) applications by integrating external tools, significantly enhancing their functionality across diverse tasks. However, this integration also introduces new security vulnerabilities, particularly in the tool scheduling mechanisms of LLM, which have not been extensively studied. To fill this gap, we present ToolCommander, a novel framework designed to exploit vulnerabilities in LLM tool-calling systems through adversarial tool injection. Our framework employs a well-designed two-stage attack strategy. Firstly, it injects malicious tools to collect user queries, then dynamically updates the injected tools based on the stolen information to enhance subsequent attacks. These stages enable ToolCommander to execute privacy theft, launch denial-of-service attacks, and even manipulate business competition by triggering unscheduled tool-calling. Notably, the ASR reaches 91.67% for privacy theft and hits 100% for denial-of-service and unscheduled tool calling in certain cases. Our work demonstrates that these vulnerabilities can lead to severe consequences beyond simple misuse of tool-calling systems, underscoring the urgent need for robust defensive strategies to secure LLM Tool-calling systems.
Subjects:Cryptography and Security (cs.CR); Artificial Intelligence (cs.AI)
Cite as:arXiv:2412.10198 [cs.CR]
 (orarXiv:2412.10198v2 [cs.CR] for this version)
 https://doi.org/10.48550/arXiv.2412.10198
arXiv-issued DOI via DataCite

Submission history

From: Rupeng Zhang [view email]
[v1] Fri, 13 Dec 2024 15:15:24 UTC (1,899 KB)
[v2] Fri, 7 Feb 2025 13:26:18 UTC (1,950 KB)
Full-text links:

Access Paper:

Current browse context:
cs.CR
Change to browse by:
export BibTeX citation

Bookmark

BibSonomy logoReddit logo

Bibliographic and Citation Tools

Bibliographic Explorer(What is the Explorer?)
Connected Papers(What is Connected Papers?)
scite Smart Citations(What are Smart Citations?)

Code, Data and Media Associated with this Article

CatalyzeX Code Finder for Papers(What is CatalyzeX?)
Hugging Face(What is Huggingface?)
Papers with Code(What is Papers with Code?)

Demos

Hugging Face Spaces(What is Spaces?)

Recommenders and Search Tools

Influence Flower(What are Influence Flowers?)
CORE Recommender(What is CORE?)

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community?Learn more about arXivLabs.

Which authors of this paper are endorsers? |Disable MathJax (What is MathJax?)

[8]ページ先頭

©2009-2025 Movatter.jp