Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Cornell University
We gratefully acknowledge support from the Simons Foundation,member institutions, and all contributors.Donate
arxiv logo>cs> arXiv:2411.18579
arXiv logo
Cornell University Logo

Computer Science > Information Theory

arXiv:2411.18579 (cs)
[Submitted on 27 Nov 2024]

Title:Surveying the space of descriptions of a composite system with machine learning

View PDFHTML (experimental)
Abstract:Multivariate information theory provides a general and principled framework for understanding how the components of a complex system are connected. Existing analyses are coarse in nature -- built up from characterizations of discrete subsystems -- and can be computationally prohibitive. In this work, we propose to study the continuous space of possible descriptions of a composite system as a window into its organizational structure. A description consists of specific information conveyed about each of the components, and the space of possible descriptions is equivalent to the space of lossy compression schemes of the components. We introduce a machine learning framework to optimize descriptions that extremize key information theoretic quantities used to characterize organization, such as total correlation and O-information. Through case studies on spin systems, Sudoku boards, and letter sequences from natural language, we identify extremal descriptions that reveal how system-wide variation emerges from individual components. By integrating machine learning into a fine-grained information theoretic analysis of composite random variables, our framework opens a new avenues for probing the structure of real-world complex systems.
Comments:Code here:this https URL
Subjects:Information Theory (cs.IT); Machine Learning (cs.LG); Data Analysis, Statistics and Probability (physics.data-an)
Cite as:arXiv:2411.18579 [cs.IT]
 (orarXiv:2411.18579v1 [cs.IT] for this version)
 https://doi.org/10.48550/arXiv.2411.18579
arXiv-issued DOI via DataCite

Submission history

From: Kieran Murphy [view email]
[v1] Wed, 27 Nov 2024 18:24:13 UTC (1,014 KB)
Full-text links:

Access Paper:

Current browse context:
cs.IT
export BibTeX citation

Bookmark

BibSonomy logoReddit logo

Bibliographic and Citation Tools

Bibliographic Explorer(What is the Explorer?)
Connected Papers(What is Connected Papers?)
scite Smart Citations(What are Smart Citations?)

Code, Data and Media Associated with this Article

CatalyzeX Code Finder for Papers(What is CatalyzeX?)
Hugging Face(What is Huggingface?)
Papers with Code(What is Papers with Code?)

Demos

Hugging Face Spaces(What is Spaces?)

Recommenders and Search Tools

Influence Flower(What are Influence Flowers?)
CORE Recommender(What is CORE?)

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community?Learn more about arXivLabs.

Which authors of this paper are endorsers? |Disable MathJax (What is MathJax?)

[8]ページ先頭

©2009-2025 Movatter.jp