Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Cornell University
We gratefully acknowledge support from the Simons Foundation,member institutions, and all contributors.Donate
arxiv logo>cs> arXiv:2411.15223
arXiv logo
Cornell University Logo

Computer Science > Machine Learning

arXiv:2411.15223 (cs)
[Submitted on 21 Nov 2024]

Title:An accuracy improving method for advertising click through rate prediction based on enhanced xDeepFM model

View PDFHTML (experimental)
Abstract:Advertising click-through rate (CTR) prediction aims to forecast the probability that a user will click on an advertisement in a given context, thus providing enterprises with decision support for product ranking and ad placement. However, CTR prediction faces challenges such as data sparsity and class imbalance, which adversely affect model training effectiveness. Moreover, most current CTR prediction models fail to fully explore the associations among user history, interests, and target advertisements from multiple perspectives, neglecting important information at different levels. To address these issues, this paper proposes an improved CTR prediction model based on the xDeepFM architecture. By integrating a multi-head attention mechanism, the model can simultaneously focus on different aspects of feature interactions, enhancing its ability to learn intricate patterns without significantly increasing computational complexity. Furthermore, replacing the linear model with a Factorization Machine (FM) model improves the handling of high-dimensional sparse data by flexibly capturing both first-order and second-order feature interactions. Experimental results on the Criteo dataset demonstrate that the proposed model outperforms other state-of-the-art methods, showing significant improvements in both AUC and Logloss metrics. This enhancement facilitates better mining of implicit relationships between features and improves the accuracy of advertising CTR prediction.
Comments:12 pages, 7 figures, 3 tables
Subjects:Machine Learning (cs.LG)
Cite as:arXiv:2411.15223 [cs.LG]
 (orarXiv:2411.15223v1 [cs.LG] for this version)
 https://doi.org/10.48550/arXiv.2411.15223
arXiv-issued DOI via DataCite

Submission history

From: Xiaowei Xi [view email]
[v1] Thu, 21 Nov 2024 03:21:29 UTC (804 KB)
Full-text links:

Access Paper:

Current browse context:
cs.LG
Change to browse by:
export BibTeX citation

Bookmark

BibSonomy logoReddit logo

Bibliographic and Citation Tools

Bibliographic Explorer(What is the Explorer?)
Connected Papers(What is Connected Papers?)
scite Smart Citations(What are Smart Citations?)

Code, Data and Media Associated with this Article

CatalyzeX Code Finder for Papers(What is CatalyzeX?)
Hugging Face(What is Huggingface?)
Papers with Code(What is Papers with Code?)

Demos

Hugging Face Spaces(What is Spaces?)

Recommenders and Search Tools

Influence Flower(What are Influence Flowers?)
CORE Recommender(What is CORE?)
IArxiv Recommender(What is IArxiv?)

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community?Learn more about arXivLabs.

Which authors of this paper are endorsers? |Disable MathJax (What is MathJax?)

[8]ページ先頭

©2009-2025 Movatter.jp