Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Cornell University
We gratefully acknowledge support from the Simons Foundation,member institutions, and all contributors.Donate
arxiv logo>cs> arXiv:2411.12351
arXiv logo
Cornell University Logo

Computer Science > Computational Geometry

arXiv:2411.12351 (cs)
[Submitted on 19 Nov 2024]

Title:Multipacking in Euclidean Plane

View PDFHTML (experimental)
Abstract:We initiate the study of multipacking problems for geometric point sets with respect to their Euclidean distances. We consider a set of $n$ points $P$ and define $N_s[v]$ as the subset of $P$ that includes the $s$ nearest points of $v \in P$ and the point $v$ itself. We assume that the \emph{$s$-th neighbor} of each point is unique, for every $s \in \{0, 1, 2, \dots , n-1\}$. For a natural number $r \leq n$, an $r$-multipacking is a set $ M \subseteq P $ such that for each point $ v \in P $ and for every integer $ 1\leq s \leq r $, $|N_s[v]\cap M|\leq (s+1)/2$. The $r$-multipacking number of $ P $ is the maximum cardinality of an $r$-multipacking of $ P $ and is denoted by $ \MP_{r}(P) $. For $r=n-1$, an $r$-multipacking is called a multipacking and $r$-multipacking number is called as multipacking number. We study the problem of computing a maximum $r$-multipacking for point sets in $\mathbb{R}^2$. We show that a maximum $1$-multipacking can be computed in polynomial time but computing a maximum $2$-multipacking is NP complete. Further, we provide approximation and parameterized solutions to the $2$-multipacking problem.
Subjects:Computational Geometry (cs.CG); Combinatorics (math.CO)
Cite as:arXiv:2411.12351 [cs.CG]
 (orarXiv:2411.12351v1 [cs.CG] for this version)
 https://doi.org/10.48550/arXiv.2411.12351
arXiv-issued DOI via DataCite

Submission history

From: Arun Kumar Das [view email]
[v1] Tue, 19 Nov 2024 09:07:50 UTC (476 KB)
Full-text links:

Access Paper:

Current browse context:
cs.CG
Change to browse by:
export BibTeX citation

Bookmark

BibSonomy logoReddit logo

Bibliographic and Citation Tools

Bibliographic Explorer(What is the Explorer?)
Connected Papers(What is Connected Papers?)
scite Smart Citations(What are Smart Citations?)

Code, Data and Media Associated with this Article

CatalyzeX Code Finder for Papers(What is CatalyzeX?)
Hugging Face(What is Huggingface?)
Papers with Code(What is Papers with Code?)

Demos

Hugging Face Spaces(What is Spaces?)

Recommenders and Search Tools

Influence Flower(What are Influence Flowers?)
CORE Recommender(What is CORE?)

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community?Learn more about arXivLabs.

Which authors of this paper are endorsers? |Disable MathJax (What is MathJax?)

[8]ページ先頭

©2009-2025 Movatter.jp