Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Cornell University
We gratefully acknowledge support from the Simons Foundation,member institutions, and all contributors.Donate
arxiv logo>cs> arXiv:2411.05806
arXiv logo
Cornell University Logo

Computer Science > Neural and Evolutionary Computing

arXiv:2411.05806 (cs)
[Submitted on 29 Oct 2024]

Title:SkipSNN: Efficiently Classifying Spike Trains with Event-attention

View PDFHTML (experimental)
Abstract:Spike train classification has recently become an important topic in the machine learning community, where each spike train is a binary event sequence with \emph{temporal-sparsity of signals of interest} and \emph{temporal-noise} properties. A promising model for it should follow the design principle of performing intensive computation only when signals of interest appear. So such tasks use mainly Spiking Neural Networks (SNNs) due to their consideration of temporal-sparsity of spike trains. However, the basic mechanism of SNNs ignore the temporal-noise issue, which makes them computationally expensive and thus high power consumption for analyzing spike trains on resource-constrained platforms. As an event-driven model, an SNN neuron makes a reaction given any input signals, making it difficult to quickly find signals of interest. In this paper, we introduce an event-attention mechanism that enables SNNs to dynamically highlight useful signals of the original spike trains. To this end, we propose SkipSNN, which extends existing SNN models by learning to mask out noise by skipping membrane potential updates and shortening the effective size of the computational graph. This process is analogous to how people choose to open and close their eyes to filter the information they see. We evaluate SkipSNN on various neuromorphic tasks and demonstrate that it achieves significantly better computational efficiency and classification accuracy than other state-of-the-art SNNs.
Comments:Published as a research paper at IEEE BigData 2024
Subjects:Neural and Evolutionary Computing (cs.NE); Artificial Intelligence (cs.AI); Machine Learning (cs.LG)
Cite as:arXiv:2411.05806 [cs.NE]
 (orarXiv:2411.05806v1 [cs.NE] for this version)
 https://doi.org/10.48550/arXiv.2411.05806
arXiv-issued DOI via DataCite

Submission history

From: Yao Su [view email]
[v1] Tue, 29 Oct 2024 03:19:25 UTC (14,013 KB)
Full-text links:

Access Paper:

Current browse context:
cs.NE
Change to browse by:
export BibTeX citation

Bookmark

BibSonomy logoReddit logo

Bibliographic and Citation Tools

Bibliographic Explorer(What is the Explorer?)
Connected Papers(What is Connected Papers?)
scite Smart Citations(What are Smart Citations?)

Code, Data and Media Associated with this Article

CatalyzeX Code Finder for Papers(What is CatalyzeX?)
Hugging Face(What is Huggingface?)
Papers with Code(What is Papers with Code?)

Demos

Hugging Face Spaces(What is Spaces?)

Recommenders and Search Tools

Influence Flower(What are Influence Flowers?)
CORE Recommender(What is CORE?)

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community?Learn more about arXivLabs.

Which authors of this paper are endorsers? |Disable MathJax (What is MathJax?)

[8]ページ先頭

©2009-2025 Movatter.jp