Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Cornell University
We gratefully acknowledge support from the Simons Foundation,member institutions, and all contributors.Donate
arxiv logo>cs> arXiv:2411.01819
arXiv logo
Cornell University Logo

Computer Science > Computer Vision and Pattern Recognition

arXiv:2411.01819 (cs)
[Submitted on 4 Nov 2024 (v1), last revised 2 Dec 2024 (this version, v2)]

Title:Free-Mask: A Novel Paradigm of Integration Between the Segmentation Diffusion Model and Image Editing to Improve Segmentation Ability

View PDFHTML (experimental)
Abstract:Current semantic segmentation models typically require a substantial amount of manually annotated data, a process that is both time-consuming and resource-intensive. Alternatively, leveraging advanced text-to-image models such as Midjourney and Stable Diffusion has emerged as an efficient strategy, enabling the automatic generation of synthetic data in place of manual annotations. However, previous methods have been limited to generating single-instance images, as the generation of multiple instances with Stable Diffusion has proven unstable. To address this limitation and expand the scope and diversity of synthetic datasets, we propose a framework \textbf{Free-Mask} that combines a Diffusion Model for segmentation with advanced image editing capabilities, allowing for the integration of multiple objects into images via text-to-image models. Our method facilitates the creation of highly realistic datasets that closely emulate open-world environments while generating accurate segmentation masks. It reduces the labor associated with manual annotation and also ensures precise mask generation. Experimental results demonstrate that synthetic data generated by \textbf{Free-Mask} enables segmentation models to outperform those trained on real data, especially in zero-shot settings. Notably, \textbf{Free-Mask} achieves new state-of-the-art results on previously unseen classes in the VOC 2012 benchmark.
Comments:16 pages,5 figures,5 tables
Subjects:Computer Vision and Pattern Recognition (cs.CV); Artificial Intelligence (cs.AI)
Cite as:arXiv:2411.01819 [cs.CV]
 (orarXiv:2411.01819v2 [cs.CV] for this version)
 https://doi.org/10.48550/arXiv.2411.01819
arXiv-issued DOI via DataCite

Submission history

From: Bo Gao [view email]
[v1] Mon, 4 Nov 2024 05:39:01 UTC (1,132 KB)
[v2] Mon, 2 Dec 2024 14:42:09 UTC (3,611 KB)
Full-text links:

Access Paper:

Current browse context:
cs.CV
Change to browse by:
export BibTeX citation

Bookmark

BibSonomy logoReddit logo

Bibliographic and Citation Tools

Bibliographic Explorer(What is the Explorer?)
Connected Papers(What is Connected Papers?)
scite Smart Citations(What are Smart Citations?)

Code, Data and Media Associated with this Article

CatalyzeX Code Finder for Papers(What is CatalyzeX?)
Hugging Face(What is Huggingface?)
Papers with Code(What is Papers with Code?)

Demos

Hugging Face Spaces(What is Spaces?)

Recommenders and Search Tools

Influence Flower(What are Influence Flowers?)
CORE Recommender(What is CORE?)

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community?Learn more about arXivLabs.

Which authors of this paper are endorsers? |Disable MathJax (What is MathJax?)

[8]ページ先頭

©2009-2025 Movatter.jp