Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Cornell University

Monday, May 5: arXiv will be READ ONLY at 9:00AM EST for approximately 30 minutes. We apologize for any inconvenience.

We gratefully acknowledge support from the Simons Foundation,member institutions, and all contributors.Donate
arxiv logo>cs> arXiv:2410.22506
arXiv logo
Cornell University Logo

Computer Science > Computer Vision and Pattern Recognition

arXiv:2410.22506 (cs)
[Submitted on 29 Oct 2024]

Title:AffectNet+: A Database for Enhancing Facial Expression Recognition with Soft-Labels

View PDFHTML (experimental)
Abstract:Automated Facial Expression Recognition (FER) is challenging due to intra-class variations and inter-class similarities. FER can be especially difficult when facial expressions reflect a mixture of various emotions (aka compound expressions). Existing FER datasets, such as AffectNet, provide discrete emotion labels (hard-labels), where a single category of emotion is assigned to an expression. To alleviate inter- and intra-class challenges, as well as provide a better facial expression descriptor, we propose a new approach to create FER datasets through a labeling method in which an image is labeled with more than one emotion (called soft-labels), each with different confidences. Specifically, we introduce the notion of soft-labels for facial expression datasets, a new approach to affective computing for more realistic recognition of facial expressions. To achieve this goal, we propose a novel methodology to accurately calculate soft-labels: a vector representing the extent to which multiple categories of emotion are simultaneously present within a single facial expression. Finding smoother decision boundaries, enabling multi-labeling, and mitigating bias and imbalanced data are some of the advantages of our proposed method. Building upon AffectNet, we introduce AffectNet+, the next-generation facial expression dataset. This dataset contains soft-labels, three categories of data complexity subsets, and additional metadata such as age, gender, ethnicity, head pose, facial landmarks, valence, and arousal. AffectNet+ will be made publicly accessible to researchers.
Subjects:Computer Vision and Pattern Recognition (cs.CV)
Cite as:arXiv:2410.22506 [cs.CV]
 (orarXiv:2410.22506v1 [cs.CV] for this version)
 https://doi.org/10.48550/arXiv.2410.22506
arXiv-issued DOI via DataCite

Submission history

From: Mohammad Mehdi Hosseini [view email]
[v1] Tue, 29 Oct 2024 19:57:10 UTC (33,376 KB)
Full-text links:

Access Paper:

Current browse context:
cs.CV
Change to browse by:
export BibTeX citation

Bookmark

BibSonomy logoReddit logo

Bibliographic and Citation Tools

Bibliographic Explorer(What is the Explorer?)
Connected Papers(What is Connected Papers?)
scite Smart Citations(What are Smart Citations?)

Code, Data and Media Associated with this Article

CatalyzeX Code Finder for Papers(What is CatalyzeX?)
Hugging Face(What is Huggingface?)
Papers with Code(What is Papers with Code?)

Demos

Hugging Face Spaces(What is Spaces?)

Recommenders and Search Tools

Influence Flower(What are Influence Flowers?)
CORE Recommender(What is CORE?)

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community?Learn more about arXivLabs.

Which authors of this paper are endorsers? |Disable MathJax (What is MathJax?)

[8]ページ先頭

©2009-2025 Movatter.jp