Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Cornell University

Monday, May 5: arXiv will be READ ONLY at 9:00AM EST for approximately 30 minutes. We apologize for any inconvenience.

We gratefully acknowledge support from the Simons Foundation,member institutions, and all contributors.Donate
arxiv logo>cs> arXiv:2410.11625
arXiv logo
Cornell University Logo

Computer Science > Computer Vision and Pattern Recognition

arXiv:2410.11625 (cs)
[Submitted on 15 Oct 2024]

Title:Fast Local Neural Regression for Low-Cost, Path Traced Lambertian Global Illumination

View PDFHTML (experimental)
Abstract:Despite recent advances in hardware acceleration of ray tracing, real-time ray budgets remain stubbornly limited at a handful of samples per pixel (spp) on commodity hardware, placing the onus on denoising algorithms to achieve high visual quality for path traced global illumination. Neural network-based solutions give excellent result quality at the cost of increased execution time relative to hand-engineered methods, making them less suitable for deployment on resource-constrained systems. We therefore propose incorporating a neural network into a computationally-efficient local linear model-based denoiser, and demonstrate faithful single-frame reconstruction of global illumination for Lambertian scenes at very low sample counts (1spp) and for low computational cost. Other contributions include improving the quality and performance of local linear model-based denoising through a simplified mathematical treatment, and demonstration of the surprising usefulness of ambient occlusion as a guide channel. We also show how our technique is straightforwardly extensible to joint denoising and upsampling of path traced renders with reference to low-cost, rasterized guide channels.
Comments:11 pages, 10 figures, 1 table
Subjects:Computer Vision and Pattern Recognition (cs.CV); Graphics (cs.GR); Machine Learning (cs.LG)
ACM classes:I.2; I.3; I.4
Cite as:arXiv:2410.11625 [cs.CV]
 (orarXiv:2410.11625v1 [cs.CV] for this version)
 https://doi.org/10.48550/arXiv.2410.11625
arXiv-issued DOI via DataCite

Submission history

From: Szabolcs Cséfalvay [view email]
[v1] Tue, 15 Oct 2024 14:14:06 UTC (31,031 KB)
Full-text links:

Access Paper:

Current browse context:
cs.CV
Change to browse by:
export BibTeX citation

Bookmark

BibSonomy logoReddit logo

Bibliographic and Citation Tools

Bibliographic Explorer(What is the Explorer?)
Connected Papers(What is Connected Papers?)
scite Smart Citations(What are Smart Citations?)

Code, Data and Media Associated with this Article

CatalyzeX Code Finder for Papers(What is CatalyzeX?)
Hugging Face(What is Huggingface?)
Papers with Code(What is Papers with Code?)

Demos

Hugging Face Spaces(What is Spaces?)

Recommenders and Search Tools

Influence Flower(What are Influence Flowers?)
CORE Recommender(What is CORE?)

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community?Learn more about arXivLabs.

Which authors of this paper are endorsers? |Disable MathJax (What is MathJax?)

[8]ページ先頭

©2009-2025 Movatter.jp