Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Cornell University
We gratefully acknowledge support from the Simons Foundation,member institutions, and all contributors.Donate
arxiv logo>stat> arXiv:2410.11101
arXiv logo
Cornell University Logo

Statistics > Machine Learning

arXiv:2410.11101 (stat)
[Submitted on 14 Oct 2024]

Title:A Two-Stage Federated Learning Approach for Industrial Prognostics Using Large-Scale High-Dimensional Signals

View PDFHTML (experimental)
Abstract:Industrial prognostics aims to develop data-driven methods that leverage high-dimensional degradation signals from assets to predict their failure times. The success of these models largely depends on the availability of substantial historical data for training. However, in practice, individual organizations often lack sufficient data to independently train reliable prognostic models, and privacy concerns prevent data sharing between organizations for collaborative model training. To overcome these challenges, this article proposes a statistical learning-based federated model that enables multiple organizations to jointly train a prognostic model while keeping their data local and secure. The proposed approach involves two key stages: federated dimension reduction and federated (log)-location-scale regression. In the first stage, we develop a federated randomized singular value decomposition algorithm for multivariate functional principal component analysis, which efficiently reduces the dimensionality of degradation signals while maintaining data privacy. The second stage proposes a federated parameter estimation algorithm for (log)-location-scale regression, allowing organizations to collaboratively estimate failure time distributions without sharing raw data. The proposed approach addresses the limitations of existing federated prognostic methods by using statistical learning techniques that perform well with smaller datasets and provide comprehensive failure time distributions. The effectiveness and practicality of the proposed model are validated using simulated data and a dataset from the NASA repository.
Subjects:Machine Learning (stat.ML); Machine Learning (cs.LG); Applications (stat.AP)
Cite as:arXiv:2410.11101 [stat.ML]
 (orarXiv:2410.11101v1 [stat.ML] for this version)
 https://doi.org/10.48550/arXiv.2410.11101
arXiv-issued DOI via DataCite

Submission history

From: Yuqi Su [view email]
[v1] Mon, 14 Oct 2024 21:26:22 UTC (46 KB)
Full-text links:

Access Paper:

Current browse context:
stat.ML
Change to browse by:
export BibTeX citation

Bookmark

BibSonomy logoReddit logo

Bibliographic and Citation Tools

Bibliographic Explorer(What is the Explorer?)
Connected Papers(What is Connected Papers?)
scite Smart Citations(What are Smart Citations?)

Code, Data and Media Associated with this Article

CatalyzeX Code Finder for Papers(What is CatalyzeX?)
Hugging Face(What is Huggingface?)
Papers with Code(What is Papers with Code?)

Demos

Hugging Face Spaces(What is Spaces?)

Recommenders and Search Tools

Influence Flower(What are Influence Flowers?)
CORE Recommender(What is CORE?)

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community?Learn more about arXivLabs.

Which authors of this paper are endorsers? |Disable MathJax (What is MathJax?)

[8]ページ先頭

©2009-2025 Movatter.jp