Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Cornell University
We gratefully acknowledge support from the Simons Foundation,member institutions, and all contributors.Donate
arxiv logo>cs> arXiv:2410.04107
arXiv logo
Cornell University Logo

Computer Science > Computer Vision and Pattern Recognition

arXiv:2410.04107 (cs)
[Submitted on 5 Oct 2024]

Title:TUBench: Benchmarking Large Vision-Language Models on Trustworthiness with Unanswerable Questions

View PDFHTML (experimental)
Abstract:Large Vision-Language Models (LVLMs) have achieved remarkable progress on visual perception and linguistic interpretation. Despite their impressive capabilities across various tasks, LVLMs still suffer from the issue of hallucination, which involves generating content that is incorrect or unfaithful to the visual or textual inputs. Traditional benchmarks, such as MME and POPE, evaluate hallucination in LVLMs within the scope of Visual Question Answering (VQA) using answerable questions. However, some questions are unanswerable due to insufficient information in the images, and the performance of LVLMs on such unanswerable questions remains underexplored. To bridge this research gap, we propose TUBench, a benchmark specifically designed to evaluate the reliability of LVLMs using unanswerable questions. TUBench comprises an extensive collection of high-quality, unanswerable questions that are meticulously crafted using ten distinct strategies. To thoroughly evaluate LVLMs, the unanswerable questions in TUBench are based on images from four diverse domains as visual contexts: screenshots of code snippets, natural images, geometry diagrams, and screenshots of statistical tables. These unanswerable questions are tailored to test LVLMs' trustworthiness in code reasoning, commonsense reasoning, geometric reasoning, and mathematical reasoning related to tables, respectively. We conducted a comprehensive quantitative evaluation of 28 leading foundational models on TUBench, with Gemini-1.5-Pro, the top-performing model, achieving an average accuracy of 69.2%, and GPT-4o, the third-ranked model, reaching 66.7% average accuracy, in determining whether questions are answerable. TUBench is available atthis https URL.
Subjects:Computer Vision and Pattern Recognition (cs.CV); Computation and Language (cs.CL)
Cite as:arXiv:2410.04107 [cs.CV]
 (orarXiv:2410.04107v1 [cs.CV] for this version)
 https://doi.org/10.48550/arXiv.2410.04107
arXiv-issued DOI via DataCite

Submission history

From: Xingwei He [view email]
[v1] Sat, 5 Oct 2024 10:23:14 UTC (48,002 KB)
Full-text links:

Access Paper:

Current browse context:
cs.CV
Change to browse by:
export BibTeX citation

Bookmark

BibSonomy logoReddit logo

Bibliographic and Citation Tools

Bibliographic Explorer(What is the Explorer?)
Connected Papers(What is Connected Papers?)
scite Smart Citations(What are Smart Citations?)

Code, Data and Media Associated with this Article

CatalyzeX Code Finder for Papers(What is CatalyzeX?)
Hugging Face(What is Huggingface?)
Papers with Code(What is Papers with Code?)

Demos

Hugging Face Spaces(What is Spaces?)

Recommenders and Search Tools

Influence Flower(What are Influence Flowers?)
CORE Recommender(What is CORE?)

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community?Learn more about arXivLabs.

Which authors of this paper are endorsers? |Disable MathJax (What is MathJax?)

[8]ページ先頭

©2009-2025 Movatter.jp