Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Cornell University
We gratefully acknowledge support from the Simons Foundation,member institutions, and all contributors.Donate
arxiv logo>cs> arXiv:2409.01686
arXiv logo
Cornell University Logo

Computer Science > Computer Vision and Pattern Recognition

arXiv:2409.01686 (cs)
[Submitted on 3 Sep 2024]

Title:Frequency-Spatial Entanglement Learning for Camouflaged Object Detection

View PDFHTML (experimental)
Abstract:Camouflaged object detection has attracted a lot of attention in computer vision. The main challenge lies in the high degree of similarity between camouflaged objects and their surroundings in the spatial domain, making identification difficult. Existing methods attempt to reduce the impact of pixel similarity by maximizing the distinguishing ability of spatial features with complicated design, but often ignore the sensitivity and locality of features in the spatial domain, leading to sub-optimal results. In this paper, we propose a new approach to address this issue by jointly exploring the representation in the frequency and spatial domains, introducing the Frequency-Spatial Entanglement Learning (FSEL) method. This method consists of a series of well-designed Entanglement Transformer Blocks (ETB) for representation learning, a Joint Domain Perception Module for semantic enhancement, and a Dual-domain Reverse Parser for feature integration in the frequency and spatial domains. Specifically, the ETB utilizes frequency self-attention to effectively characterize the relationship between different frequency bands, while the entanglement feed-forward network facilitates information interaction between features of different domains through entanglement learning. Our extensive experiments demonstrate the superiority of our FSEL over 21 state-of-the-art methods, through comprehensive quantitative and qualitative comparisons in three widely-used datasets. The source code is available at:this https URL.
Comments:Accepted at ECCV 2024
Subjects:Computer Vision and Pattern Recognition (cs.CV)
Cite as:arXiv:2409.01686 [cs.CV]
 (orarXiv:2409.01686v1 [cs.CV] for this version)
 https://doi.org/10.48550/arXiv.2409.01686
arXiv-issued DOI via DataCite

Submission history

From: Yanguang Sun [view email]
[v1] Tue, 3 Sep 2024 07:58:47 UTC (1,583 KB)
Full-text links:

Access Paper:

Current browse context:
cs.CV
Change to browse by:
export BibTeX citation

Bookmark

BibSonomy logoReddit logo

Bibliographic and Citation Tools

Bibliographic Explorer(What is the Explorer?)
Connected Papers(What is Connected Papers?)
scite Smart Citations(What are Smart Citations?)

Code, Data and Media Associated with this Article

CatalyzeX Code Finder for Papers(What is CatalyzeX?)
Hugging Face(What is Huggingface?)
Papers with Code(What is Papers with Code?)

Demos

Hugging Face Spaces(What is Spaces?)

Recommenders and Search Tools

Influence Flower(What are Influence Flowers?)
CORE Recommender(What is CORE?)

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community?Learn more about arXivLabs.

Which authors of this paper are endorsers? |Disable MathJax (What is MathJax?)

[8]ページ先頭

©2009-2025 Movatter.jp