Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Cornell University
We gratefully acknowledge support from the Simons Foundation,member institutions, and all contributors.Donate
arxiv logo>cs> arXiv:2408.06907
arXiv logo
Cornell University Logo

Computer Science > Information Theory

arXiv:2408.06907 (cs)
[Submitted on 13 Aug 2024]

Title:An Information Geometry Interpretation for Approximate Message Passing

View PDFHTML (experimental)
Abstract:In this paper, we propose an information geometry (IG) framework to solve the standard linear regression problem. The proposed framework is an extension of the one for computing the mean of complex multivariate Gaussian distribution. By applying the proposed framework, the information geometry approach (IGA) and the approximate information geometry approach (AIGA) for basis pursuit de-noising (BPDN) in standard linear regression are derived. The framework can also be applied to other standard linear regression problems. With the transformations of natural and expectation parameters of Gaussian distributions, we then show the relationship between the IGA and the message passing (MP) algorithm. Finally, we prove that the AIGA is equivalent to the approximate message passing (AMP) algorithm. These intrinsic results offer a new perspective for the AMP algorithm, and clues for understanding and improving stochastic reasoning methods.
Comments:30 pages, 5 figures
Subjects:Information Theory (cs.IT)
Cite as:arXiv:2408.06907 [cs.IT]
 (orarXiv:2408.06907v1 [cs.IT] for this version)
 https://doi.org/10.48550/arXiv.2408.06907
arXiv-issued DOI via DataCite

Submission history

From: An-An Lu [view email]
[v1] Tue, 13 Aug 2024 14:00:44 UTC (1,348 KB)
Full-text links:

Access Paper:

Current browse context:
cs.IT
Change to browse by:
export BibTeX citation

Bookmark

BibSonomy logoReddit logo

Bibliographic and Citation Tools

Bibliographic Explorer(What is the Explorer?)
Connected Papers(What is Connected Papers?)
scite Smart Citations(What are Smart Citations?)

Code, Data and Media Associated with this Article

CatalyzeX Code Finder for Papers(What is CatalyzeX?)
Hugging Face(What is Huggingface?)
Papers with Code(What is Papers with Code?)

Demos

Hugging Face Spaces(What is Spaces?)

Recommenders and Search Tools

Influence Flower(What are Influence Flowers?)
CORE Recommender(What is CORE?)

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community?Learn more about arXivLabs.

Which authors of this paper are endorsers? |Disable MathJax (What is MathJax?)

[8]ページ先頭

©2009-2025 Movatter.jp