Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Cornell University
We gratefully acknowledge support from the Simons Foundation,member institutions, and all contributors.Donate
arxiv logo>cs> arXiv:2407.01498
arXiv logo
Cornell University Logo

Computer Science > Information Theory

arXiv:2407.01498 (cs)
[Submitted on 1 Jul 2024]

Title:The Inverted 3-Sum Box: General Formulation and Quantum Information Theoretic Optimality

View PDFHTML (experimental)
Abstract:The $N$-sum box protocol specifies a class of $\mathbb{F}_d$ linear functions $f(W_1,\cdots,W_K)=V_1W_1+V_2W_2+\cdots+V_KW_K\in\mathbb{F}_d^{m\times 1}$ that can be computed at information theoretically optimal communication cost (minimum number of qudits $\Delta_1,\cdots,\Delta_K$ sent by the transmitters Alice$_1$, Alice$_2$,$\cdots$, Alice$_K$, respectively, to the receiver, Bob, per computation instance) over a noise-free quantum multiple access channel (QMAC), when the input data streams $W_k\in\mathbb{F}_d^{m_k\times 1}, k\in[K]$, originate at the distributed transmitters, who share quantum entanglement in advance but are not otherwise allowed to communicate with each other. In prior work this set of optimally computable functions is identified in terms of a strong self-orthogonality (SSO) condition on the transfer function of the $N$-sum box. In this work we consider an `inverted' scenario, where instead of a feasible $N$-sum box transfer function, we are given an arbitrary $\mathbb{F}_d$ linear function, i.e., arbitrary matrices $V_k\in\mathbb{F}_d^{m\times m_k}$ are specified, and the goal is to characterize the set of all feasible communication cost tuples $(\Delta_1,\cdots,\Delta_K)$, not just based on $N$-sum box protocols, but across all possible quantum coding schemes. As our main result, we fully solve this problem for $K=3$ transmitters ($K\geq 4$ settings remain open). Coding schemes based on the $N$-sum box protocol (along with elementary ideas such as treating qudits as classical dits, time-sharing and batch-processing) are shown to be information theoretically optimal in all cases. As an example, in the symmetric case where rk$(V_1)$=rk$(V_2)$=rk$(V_3) \triangleq r_1$, rk$([V_1, V_2])$=rk$([V_2, V_3])$=rk$([V_3, V_1])\triangleq r_2$, and rk$([V_1, V_2, V_3])\triangleq r_3$ (rk = rank), the minimum total-download cost is $\max \{1.5r_1 + 0.75(r_3 - r_2), r_3\}$.
Subjects:Information Theory (cs.IT)
Cite as:arXiv:2407.01498 [cs.IT]
 (orarXiv:2407.01498v1 [cs.IT] for this version)
 https://doi.org/10.48550/arXiv.2407.01498
arXiv-issued DOI via DataCite

Submission history

From: Yuhang Yao [view email]
[v1] Mon, 1 Jul 2024 17:43:18 UTC (31 KB)
Full-text links:

Access Paper:

Current browse context:
cs.IT
Change to browse by:
export BibTeX citation

Bookmark

BibSonomy logoReddit logo

Bibliographic and Citation Tools

Bibliographic Explorer(What is the Explorer?)
Connected Papers(What is Connected Papers?)
scite Smart Citations(What are Smart Citations?)

Code, Data and Media Associated with this Article

CatalyzeX Code Finder for Papers(What is CatalyzeX?)
Hugging Face(What is Huggingface?)
Papers with Code(What is Papers with Code?)

Demos

Hugging Face Spaces(What is Spaces?)

Recommenders and Search Tools

Influence Flower(What are Influence Flowers?)
CORE Recommender(What is CORE?)

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community?Learn more about arXivLabs.

Which authors of this paper are endorsers? |Disable MathJax (What is MathJax?)

[8]ページ先頭

©2009-2025 Movatter.jp