Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Cornell University

Monday, May 5: arXiv will be READ ONLY at 9:00AM EST for approximately 30 minutes. We apologize for any inconvenience.

We gratefully acknowledge support from the Simons Foundation,member institutions, and all contributors.Donate
arxiv logo>cs> arXiv:2406.14865
arXiv logo
Cornell University Logo

Computer Science > Neural and Evolutionary Computing

arXiv:2406.14865 (cs)
[Submitted on 21 Jun 2024]

Title:Multi-Domain Evolutionary Optimization of Network Structures

View PDFHTML (experimental)
Abstract:Multi-Task Evolutionary Optimization (MTEO), an important field focusing on addressing complex problems through optimizing multiple tasks simultaneously, has attracted much attention. While MTEO has been primarily focusing on task similarity, there remains a hugely untapped potential in harnessing the shared characteristics between different domains to enhance evolutionary optimization. For example, real-world complex systems usually share the same characteristics, such as the power-law rule, small-world property, and community structure, thus making it possible to transfer solutions optimized in one system to another to facilitate the optimization. Drawing inspiration from this observation of shared characteristics within complex systems, we set out to extend MTEO to a novel framework - multi-domain evolutionary optimization (MDEO). To examine the performance of the proposed MDEO, we utilize a challenging combinatorial problem of great security concern - community deception in complex networks as the optimization task. To achieve MDEO, we propose a community-based measurement of graph similarity to manage the knowledge transfer among domains. Furthermore, we develop a graph representation-based network alignment model that serves as the conduit for effectively transferring solutions between different domains. Moreover, we devise a self-adaptive mechanism to determine the number of transferred solutions from different domains and introduce a novel mutation operator based on the learned mapping to facilitate the utilization of knowledge from other domains. Experiments on eight real-world networks of different domains demonstrate MDEO superiority in efficacy compared to classical evolutionary optimization. Simulations of attacks on the community validate the effectiveness of the proposed MDEO in safeguarding community security.
Subjects:Neural and Evolutionary Computing (cs.NE)
Cite as:arXiv:2406.14865 [cs.NE]
 (orarXiv:2406.14865v1 [cs.NE] for this version)
 https://doi.org/10.48550/arXiv.2406.14865
arXiv-issued DOI via DataCite

Submission history

From: Kang Hao Cheong [view email]
[v1] Fri, 21 Jun 2024 04:53:39 UTC (1,007 KB)
Full-text links:

Access Paper:

Current browse context:
cs.NE
Change to browse by:
export BibTeX citation

Bookmark

BibSonomy logoReddit logo

Bibliographic and Citation Tools

Bibliographic Explorer(What is the Explorer?)
Connected Papers(What is Connected Papers?)
scite Smart Citations(What are Smart Citations?)

Code, Data and Media Associated with this Article

CatalyzeX Code Finder for Papers(What is CatalyzeX?)
Hugging Face(What is Huggingface?)
Papers with Code(What is Papers with Code?)

Demos

Hugging Face Spaces(What is Spaces?)

Recommenders and Search Tools

Influence Flower(What are Influence Flowers?)
CORE Recommender(What is CORE?)

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community?Learn more about arXivLabs.

Which authors of this paper are endorsers? |Disable MathJax (What is MathJax?)

[8]ページ先頭

©2009-2025 Movatter.jp