Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Cornell University
We gratefully acknowledge support from the Simons Foundation,member institutions, and all contributors.Donate
arxiv logo>cs> arXiv:2406.00335
arXiv logo
Cornell University Logo

Computer Science > Machine Learning

arXiv:2406.00335 (cs)
[Submitted on 1 Jun 2024]

Title:Benchmarking for Deep Uplift Modeling in Online Marketing

View PDFHTML (experimental)
Abstract:Online marketing is critical for many industrial platforms and business applications, aiming to increase user engagement and platform revenue by identifying corresponding delivery-sensitive groups for specific incentives, such as coupons and bonuses. As the scale and complexity of features in industrial scenarios increase, deep uplift modeling (DUM) as a promising technique has attracted increased research from academia and industry, resulting in various predictive models. However, current DUM still lacks some standardized benchmarks and unified evaluation protocols, which limit the reproducibility of experimental results in existing studies and the practical value and potential impact in this direction. In this paper, we provide an open benchmark for DUM and present comparison results of existing models in a reproducible and uniform manner. To this end, we conduct extensive experiments on two representative industrial datasets with different preprocessing settings to re-evaluate 13 existing models. Surprisingly, our experimental results show that the most recent work differs less than expected from traditional work in many cases. In addition, our experiments also reveal the limitations of DUM in generalization, especially for different preprocessing and test distributions. Our benchmarking work allows researchers to evaluate the performance of new models quickly but also reasonably demonstrates fair comparison results with existing models. It also gives practitioners valuable insights into often overlooked considerations when deploying DUM. We will make this benchmarking library, evaluation protocol, and experimental setup available on GitHub.
Subjects:Machine Learning (cs.LG)
Cite as:arXiv:2406.00335 [cs.LG]
 (orarXiv:2406.00335v1 [cs.LG] for this version)
 https://doi.org/10.48550/arXiv.2406.00335
arXiv-issued DOI via DataCite

Submission history

From: Dugang Liu [view email]
[v1] Sat, 1 Jun 2024 07:23:37 UTC (224 KB)
Full-text links:

Access Paper:

Current browse context:
cs.LG
Change to browse by:
export BibTeX citation

Bookmark

BibSonomy logoReddit logo

Bibliographic and Citation Tools

Bibliographic Explorer(What is the Explorer?)
Connected Papers(What is Connected Papers?)
scite Smart Citations(What are Smart Citations?)

Code, Data and Media Associated with this Article

CatalyzeX Code Finder for Papers(What is CatalyzeX?)
Hugging Face(What is Huggingface?)
Papers with Code(What is Papers with Code?)

Demos

Hugging Face Spaces(What is Spaces?)

Recommenders and Search Tools

Influence Flower(What are Influence Flowers?)
CORE Recommender(What is CORE?)
IArxiv Recommender(What is IArxiv?)

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community?Learn more about arXivLabs.

Which authors of this paper are endorsers? |Disable MathJax (What is MathJax?)

[8]ページ先頭

©2009-2025 Movatter.jp