Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Cornell University
We gratefully acknowledge support from the Simons Foundation,member institutions, and all contributors.Donate
arxiv logo>cs> arXiv:2405.20690
arXiv logo
Cornell University Logo

Computer Science > Machine Learning

arXiv:2405.20690 (cs)
[Submitted on 31 May 2024]

Title:Unleashing the Potential of Diffusion Models for Incomplete Data Imputation

View PDFHTML (experimental)
Abstract:This paper introduces DiffPuter, an iterative method for missing data imputation that leverages the Expectation-Maximization (EM) algorithm and Diffusion Models. By treating missing data as hidden variables that can be updated during model training, we frame the missing data imputation task as an EM problem. During the M-step, DiffPuter employs a diffusion model to learn the joint distribution of both the observed and currently estimated missing data. In the E-step, DiffPuter re-estimates the missing data based on the conditional probability given the observed data, utilizing the diffusion model learned in the M-step. Starting with an initial imputation, DiffPuter alternates between the M-step and E-step until convergence. Through this iterative process, DiffPuter progressively refines the complete data distribution, yielding increasingly accurate estimations of the missing data. Our theoretical analysis demonstrates that the unconditional training and conditional sampling processes of the diffusion model align precisely with the objectives of the M-step and E-step, respectively. Empirical evaluations across 10 diverse datasets and comparisons with 16 different imputation methods highlight DiffPuter's superior performance. Notably, DiffPuter achieves an average improvement of 8.10% in MAE and 5.64% in RMSE compared to the most competitive existing method.
Subjects:Machine Learning (cs.LG)
Cite as:arXiv:2405.20690 [cs.LG]
 (orarXiv:2405.20690v1 [cs.LG] for this version)
 https://doi.org/10.48550/arXiv.2405.20690
arXiv-issued DOI via DataCite

Submission history

From: Hengrui Zhang [view email]
[v1] Fri, 31 May 2024 08:35:56 UTC (392 KB)
Full-text links:

Access Paper:

Current browse context:
cs.LG
Change to browse by:
export BibTeX citation

Bookmark

BibSonomy logoReddit logo

Bibliographic and Citation Tools

Bibliographic Explorer(What is the Explorer?)
Connected Papers(What is Connected Papers?)
scite Smart Citations(What are Smart Citations?)

Code, Data and Media Associated with this Article

CatalyzeX Code Finder for Papers(What is CatalyzeX?)
Hugging Face(What is Huggingface?)
Papers with Code(What is Papers with Code?)

Demos

Hugging Face Spaces(What is Spaces?)

Recommenders and Search Tools

Influence Flower(What are Influence Flowers?)
CORE Recommender(What is CORE?)
IArxiv Recommender(What is IArxiv?)

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community?Learn more about arXivLabs.

Which authors of this paper are endorsers? |Disable MathJax (What is MathJax?)

[8]ページ先頭

©2009-2025 Movatter.jp