Computer Science > Machine Learning
arXiv:2405.18161 (cs)
[Submitted on 28 May 2024]
Title:Back to the Drawing Board for Fair Representation Learning
View a PDF of the paper titled Back to the Drawing Board for Fair Representation Learning, by Ang\'eline Pouget and 4 other authors
View PDFAbstract:The goal of Fair Representation Learning (FRL) is to mitigate biases in machine learning models by learning data representations that enable high accuracy on downstream tasks while minimizing discrimination based on sensitive attributes. The evaluation of FRL methods in many recent works primarily focuses on the tradeoff between downstream fairness and accuracy with respect to a single task that was used to approximate the utility of representations during training (proxy task). This incentivizes retaining only features relevant to the proxy task while discarding all other information. In extreme cases, this can cause the learned representations to collapse to a trivial, binary value, rendering them unusable in transfer settings. In this work, we argue that this approach is fundamentally mismatched with the original motivation of FRL, which arises from settings with many downstream tasks unknown at training time (transfer tasks). To remedy this, we propose to refocus the evaluation protocol of FRL methods primarily around the performance on transfer tasks. A key challenge when conducting such an evaluation is the lack of adequate benchmarks. We address this by formulating four criteria that a suitable evaluation procedure should fulfill. Based on these, we propose TransFair, a benchmark that satisfies these criteria, consisting of novel variations of popular FRL datasets with carefully calibrated transfer tasks. In this setting, we reevaluate state-of-the-art FRL methods, observing that they often overfit to the proxy task, which causes them to underperform on certain transfer tasks. We further highlight the importance of task-agnostic learning signals for FRL methods, as they can lead to more transferrable representations.
Subjects: | Machine Learning (cs.LG); Artificial Intelligence (cs.AI) |
Cite as: | arXiv:2405.18161 [cs.LG] |
(orarXiv:2405.18161v1 [cs.LG] for this version) | |
https://doi.org/10.48550/arXiv.2405.18161 arXiv-issued DOI via DataCite |
Full-text links:
Access Paper:
- View PDF
- TeX Source
- Other Formats
View a PDF of the paper titled Back to the Drawing Board for Fair Representation Learning, by Ang\'eline Pouget and 4 other authors
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer(What is the Explorer?)
Connected Papers(What is Connected Papers?)
Litmaps(What is Litmaps?)
scite Smart Citations(What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv(What is alphaXiv?)
CatalyzeX Code Finder for Papers(What is CatalyzeX?)
DagsHub(What is DagsHub?)
Gotit.pub(What is GotitPub?)
Hugging Face(What is Huggingface?)
Papers with Code(What is Papers with Code?)
ScienceCast(What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower(What are Influence Flowers?)
CORE Recommender(What is CORE?)
IArxiv Recommender(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community?Learn more about arXivLabs.