Computer Science > Multiagent Systems
arXiv:2405.14198 (cs)
[Submitted on 23 May 2024]
Title:Enabling Sustainable Freight Forwarding Network via Collaborative Games
View a PDF of the paper titled Enabling Sustainable Freight Forwarding Network via Collaborative Games, by Pang-Jin Tan and 2 other authors
View PDFHTML (experimental)Abstract:Freight forwarding plays a crucial role in facilitating global trade and logistics. However, as the freight forwarding market is extremely fragmented, freight forwarders often face the issue of not being able to fill the available shipping capacity. This recurrent issue motivates the creation of various freight forwarding networks that aim at exchanging capacities and demands so that the resource utilization of individual freight forwarders can be maximized. In this paper, we focus on how to design such a collaborative network based on collaborative game theory, with the Shapley value representing a fair scheme for profit sharing. Noting that the exact computation of Shapley values is intractable for large-scale real-world scenarios, we incorporate the observation that collaboration among two forwarders is only possible if their service routes and demands overlap. This leads to a new class of collaborative games called the Locally Collaborative Games (LCGs), where agents can only collaborate with their neighbors. We propose an efficient approach to compute Shapley values for LCGs, and numerically demonstrate that our approach significantly outperforms the state-of-the-art approach for a wide variety of network structures.
Comments: | Accepted to the 33rd International Joint Conference on Artificial Intelligence (IJCAI-24) |
Subjects: | Multiagent Systems (cs.MA) |
Cite as: | arXiv:2405.14198 [cs.MA] |
(orarXiv:2405.14198v1 [cs.MA] for this version) | |
https://doi.org/10.48550/arXiv.2405.14198 arXiv-issued DOI via DataCite |
Full-text links:
Access Paper:
- View PDF
- HTML (experimental)
- TeX Source
- Other Formats
View a PDF of the paper titled Enabling Sustainable Freight Forwarding Network via Collaborative Games, by Pang-Jin Tan and 2 other authors
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer(What is the Explorer?)
Connected Papers(What is Connected Papers?)
Litmaps(What is Litmaps?)
scite Smart Citations(What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv(What is alphaXiv?)
CatalyzeX Code Finder for Papers(What is CatalyzeX?)
DagsHub(What is DagsHub?)
Gotit.pub(What is GotitPub?)
Hugging Face(What is Huggingface?)
Papers with Code(What is Papers with Code?)
ScienceCast(What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower(What are Influence Flowers?)
CORE Recommender(What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community?Learn more about arXivLabs.