Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Cornell University

Monday, May 5: arXiv will be READ ONLY at 9:00AM EST for approximately 30 minutes. We apologize for any inconvenience.

We gratefully acknowledge support from the Simons Foundation,member institutions, and all contributors.Donate
arxiv logo>cs> arXiv:2405.08017
arXiv logo
Cornell University Logo

Computer Science > Machine Learning

arXiv:2405.08017 (cs)
[Submitted on 11 May 2024]

Title:Translating Expert Intuition into Quantifiable Features: Encode Investigator Domain Knowledge via LLM for Enhanced Predictive Analytics

View PDF
Abstract:In the realm of predictive analytics, the nuanced domain knowledge of investigators often remains underutilized, confined largely to subjective interpretations and ad hoc decision-making. This paper explores the potential of Large Language Models (LLMs) to bridge this gap by systematically converting investigator-derived insights into quantifiable, actionable features that enhance model performance. We present a framework that leverages LLMs' natural language understanding capabilities to encode these red flags into a structured feature set that can be readily integrated into existing predictive models. Through a series of case studies, we demonstrate how this approach not only preserves the critical human expertise within the investigative process but also scales the impact of this knowledge across various prediction tasks. The results indicate significant improvements in risk assessment and decision-making accuracy, highlighting the value of blending human experiential knowledge with advanced machine learning techniques. This study paves the way for more sophisticated, knowledge-driven analytics in fields where expert insight is paramount.
Subjects:Machine Learning (cs.LG); Artificial Intelligence (cs.AI); Computation and Language (cs.CL)
Cite as:arXiv:2405.08017 [cs.LG]
 (orarXiv:2405.08017v1 [cs.LG] for this version)
 https://doi.org/10.48550/arXiv.2405.08017
arXiv-issued DOI via DataCite

Submission history

From: Xianlong Zeng [view email]
[v1] Sat, 11 May 2024 13:23:43 UTC (284 KB)
Full-text links:

Access Paper:

  • View PDF
  • Other Formats
Current browse context:
cs.LG
Change to browse by:
export BibTeX citation

Bookmark

BibSonomy logoReddit logo

Bibliographic and Citation Tools

Bibliographic Explorer(What is the Explorer?)
Connected Papers(What is Connected Papers?)
scite Smart Citations(What are Smart Citations?)

Code, Data and Media Associated with this Article

CatalyzeX Code Finder for Papers(What is CatalyzeX?)
Hugging Face(What is Huggingface?)
Papers with Code(What is Papers with Code?)

Demos

Hugging Face Spaces(What is Spaces?)

Recommenders and Search Tools

Influence Flower(What are Influence Flowers?)
CORE Recommender(What is CORE?)
IArxiv Recommender(What is IArxiv?)

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community?Learn more about arXivLabs.

Which authors of this paper are endorsers? |Disable MathJax (What is MathJax?)

[8]ページ先頭

©2009-2025 Movatter.jp