Computer Science > Artificial Intelligence
arXiv:2405.04041 (cs)
[Submitted on 7 May 2024]
Title:Feature Map Convergence Evaluation for Functional Module
View a PDF of the paper titled Feature Map Convergence Evaluation for Functional Module, by Ludan Zhang and 3 other authors
View PDFHTML (experimental)Abstract:Autonomous driving perception models are typically composed of multiple functional modules that interact through complex relationships to accomplish environment understanding. However, perception models are predominantly optimized as a black box through end-to-end training, lacking independent evaluation of functional modules, which poses difficulties for interpretability and optimization. Pioneering in the issue, we propose an evaluation method based on feature map analysis to gauge the convergence of model, thereby assessing functional modules' training maturity. We construct a quantitative metric named as the Feature Map Convergence Score (FMCS) and develop Feature Map Convergence Evaluation Network (FMCE-Net) to measure and predict the convergence degree of models respectively. FMCE-Net achieves remarkable predictive accuracy for FMCS across multiple image classification experiments, validating the efficacy and robustness of the introduced approach. To the best of our knowledge, this is the first independent evaluation method for functional modules, offering a new paradigm for the training assessment towards perception models.
Subjects: | Artificial Intelligence (cs.AI); Computer Vision and Pattern Recognition (cs.CV) |
Cite as: | arXiv:2405.04041 [cs.AI] |
(orarXiv:2405.04041v1 [cs.AI] for this version) | |
https://doi.org/10.48550/arXiv.2405.04041 arXiv-issued DOI via DataCite |
Full-text links:
Access Paper:
- View PDF
- HTML (experimental)
- TeX Source
- Other Formats
View a PDF of the paper titled Feature Map Convergence Evaluation for Functional Module, by Ludan Zhang and 3 other authors
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer(What is the Explorer?)
Connected Papers(What is Connected Papers?)
Litmaps(What is Litmaps?)
scite Smart Citations(What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv(What is alphaXiv?)
CatalyzeX Code Finder for Papers(What is CatalyzeX?)
DagsHub(What is DagsHub?)
Gotit.pub(What is GotitPub?)
Hugging Face(What is Huggingface?)
Papers with Code(What is Papers with Code?)
ScienceCast(What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower(What are Influence Flowers?)
CORE Recommender(What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community?Learn more about arXivLabs.