Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Cornell University
We gratefully acknowledge support from the Simons Foundation,member institutions, and all contributors.Donate
arxiv logo>cs> arXiv:2405.01614
arXiv logo
Cornell University Logo

Computer Science > Machine Learning

arXiv:2405.01614 (cs)
[Submitted on 2 May 2024 (v1), last revised 7 Mar 2025 (this version, v2)]

Title:RULSurv: A probabilistic survival-based method for early censoring-aware prediction of remaining useful life in ball bearings

View PDFHTML (experimental)
Abstract:Censored data refers to situations where the full information about a particular event or process is only partially known. In survival analysis, censoring plays an important role, as ignoring such observations can bias the model parameters and overestimate the probability of when the event is likely to occur. There has been a renewed interest in using data-driven methods to predict the remaining useful life (RUL) of ball bearings for predictive maintenance. However, few studies have explicitly addressed the challenge of handling censored data. To address this issue, we introduce a novel and flexible method for early fault detection using Kullback-Leibler (KL) divergence and RUL estimation using survival analysis that naturally supports censored data. We demonstrate our approach in the XJTU-SY dataset using a 5-fold cross-validation across three different operating conditions. When predicting the time to failure for bearings under the highest load (C1, 12.0 kN and 2100 RPM) with 25\% random censoring, our approach achieves a mean absolute error (MAE) of 14.7 minutes (95\% CI 13.6-15.8) using a linear CoxPH model, and an MAE of 12.6 minutes (95\% CI 11.8-13.4) using a nonlinear Random Survival Forests model, compared to an MAE of 18.5 minutes (95\% 17.4-19.6) using a linear LASSO model that does not support censoring. Moreover, our approach achieves a mean cumulative relative accuracy (CRA) of 0.7586 over 5 bearings under the highest load, which improves over several state-of-the-art baselines. Our work highlights the importance of considering censored observations as part of the model design when building predictive models for early fault detection and RUL estimation.
Subjects:Machine Learning (cs.LG); Artificial Intelligence (cs.AI)
Cite as:arXiv:2405.01614 [cs.LG]
 (orarXiv:2405.01614v2 [cs.LG] for this version)
 https://doi.org/10.48550/arXiv.2405.01614
arXiv-issued DOI via DataCite

Submission history

From: Christian Marius Lillelund [view email]
[v1] Thu, 2 May 2024 16:17:29 UTC (5,526 KB)
[v2] Fri, 7 Mar 2025 12:31:27 UTC (5,510 KB)
Full-text links:

Access Paper:

  • View PDF
  • HTML (experimental)
  • TeX Source
  • Other Formats
Current browse context:
cs.LG
Change to browse by:
export BibTeX citation

Bookmark

BibSonomy logoReddit logo

Bibliographic and Citation Tools

Bibliographic Explorer(What is the Explorer?)
Connected Papers(What is Connected Papers?)
scite Smart Citations(What are Smart Citations?)

Code, Data and Media Associated with this Article

CatalyzeX Code Finder for Papers(What is CatalyzeX?)
Hugging Face(What is Huggingface?)
Papers with Code(What is Papers with Code?)

Demos

Hugging Face Spaces(What is Spaces?)

Recommenders and Search Tools

Influence Flower(What are Influence Flowers?)
CORE Recommender(What is CORE?)
IArxiv Recommender(What is IArxiv?)

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community?Learn more about arXivLabs.

Which authors of this paper are endorsers? |Disable MathJax (What is MathJax?)

[8]ページ先頭

©2009-2025 Movatter.jp