Computer Science > Computer Vision and Pattern Recognition
arXiv:2404.13434 (cs)
[Submitted on 20 Apr 2024]
Title:Nested-TNT: Hierarchical Vision Transformers with Multi-Scale Feature Processing
View a PDF of the paper titled Nested-TNT: Hierarchical Vision Transformers with Multi-Scale Feature Processing, by Yuang Liu and 2 other authors
View PDFHTML (experimental)Abstract:Transformer has been applied in the field of computer vision due to its excellent performance in natural language processing, surpassing traditional convolutional neural networks and achieving new state-of-the-art. ViT divides an image into several local patches, known as "visual sentences". However, the information contained in the image is vast and complex, and focusing only on the features at the "visual sentence" level is not enough. The features between local patches should also be taken into consideration. In order to achieve further improvement, the TNT model is proposed, whose algorithm further divides the image into smaller patches, namely "visual words," achieving more accurate results. The core of Transformer is the Multi-Head Attention mechanism, and traditional attention mechanisms ignore interactions across different attention heads. In order to reduce redundancy and improve utilization, we introduce the nested algorithm and apply the Nested-TNT to image classification tasks. The experiment confirms that the proposed model has achieved better classification performance over ViT and TNT, exceeding 2.25%, 1.1% on dataset CIFAR10 and 2.78%, 0.25% on dataset FLOWERS102 respectively.
Subjects: | Computer Vision and Pattern Recognition (cs.CV); Artificial Intelligence (cs.AI) |
Cite as: | arXiv:2404.13434 [cs.CV] |
(orarXiv:2404.13434v1 [cs.CV] for this version) | |
https://doi.org/10.48550/arXiv.2404.13434 arXiv-issued DOI via DataCite |
Full-text links:
Access Paper:
- View PDF
- HTML (experimental)
- TeX Source
- Other Formats
View a PDF of the paper titled Nested-TNT: Hierarchical Vision Transformers with Multi-Scale Feature Processing, by Yuang Liu and 2 other authors
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer(What is the Explorer?)
Connected Papers(What is Connected Papers?)
Litmaps(What is Litmaps?)
scite Smart Citations(What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv(What is alphaXiv?)
CatalyzeX Code Finder for Papers(What is CatalyzeX?)
DagsHub(What is DagsHub?)
Gotit.pub(What is GotitPub?)
Hugging Face(What is Huggingface?)
Papers with Code(What is Papers with Code?)
ScienceCast(What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower(What are Influence Flowers?)
CORE Recommender(What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community?Learn more about arXivLabs.