Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Cornell University
We gratefully acknowledge support from the Simons Foundation,member institutions, and all contributors.Donate
arxiv logo>cs> arXiv:2404.09193
arXiv logo
Cornell University Logo

Computer Science > Computer Vision and Pattern Recognition

arXiv:2404.09193 (cs)
[Submitted on 14 Apr 2024 (v1), last revised 27 Aug 2024 (this version, v2)]

Title:FaceCat: Enhancing Face Recognition Security with a Unified Diffusion Model

View PDFHTML (experimental)
Abstract:Face anti-spoofing (FAS) and adversarial detection (FAD) have been regarded as critical technologies to ensure the safety of face recognition systems. However, due to limited practicality, complex deployment, and the additional computational overhead, it is necessary to implement both detection techniques within a unified framework. This paper aims to achieve this goal by breaking through two primary obstacles: 1) the suboptimal face feature representation and 2) the scarcity of training data. To address the limited performance caused by existing feature representations, motivated by the rich structural and detailed features of face diffusion models, we propose FaceCat, the first approach leveraging the diffusion model to simultaneously enhance the performance of FAS and FAD. Specifically, FaceCat elaborately designs a hierarchical fusion mechanism to capture rich face semantic features of the diffusion model. These features then serve as a robust foundation for a lightweight head, designed to execute FAS and FAD simultaneously. Due to the limitations in feature representation that arise from relying solely on single-modality image data, we further propose a novel text-guided multi-modal alignment strategy that utilizes text prompts to enrich feature representation, thereby enhancing performance. To combat data scarcity, we build a comprehensive dataset with a wide range of 28 attack types, offering greater potential for a unified framework in facial security. Extensive experiments validate the effectiveness of FaceCat generalizes significantly better and obtains excellent robustness against common input transformations.
Comments:Under review
Subjects:Computer Vision and Pattern Recognition (cs.CV)
Cite as:arXiv:2404.09193 [cs.CV]
 (orarXiv:2404.09193v2 [cs.CV] for this version)
 https://doi.org/10.48550/arXiv.2404.09193
arXiv-issued DOI via DataCite

Submission history

From: Jiawei Chen [view email]
[v1] Sun, 14 Apr 2024 09:01:26 UTC (2,466 KB)
[v2] Tue, 27 Aug 2024 07:02:07 UTC (2,404 KB)
Full-text links:

Access Paper:

Current browse context:
cs.CV
Change to browse by:
export BibTeX citation

Bookmark

BibSonomy logoReddit logo

Bibliographic and Citation Tools

Bibliographic Explorer(What is the Explorer?)
Connected Papers(What is Connected Papers?)
scite Smart Citations(What are Smart Citations?)

Code, Data and Media Associated with this Article

CatalyzeX Code Finder for Papers(What is CatalyzeX?)
Hugging Face(What is Huggingface?)
Papers with Code(What is Papers with Code?)

Demos

Hugging Face Spaces(What is Spaces?)

Recommenders and Search Tools

Influence Flower(What are Influence Flowers?)
CORE Recommender(What is CORE?)

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community?Learn more about arXivLabs.

Which authors of this paper are endorsers? |Disable MathJax (What is MathJax?)

[8]ページ先頭

©2009-2025 Movatter.jp