Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Cornell University
We gratefully acknowledge support from the Simons Foundation,member institutions, and all contributors.Donate
arxiv logo>cs> arXiv:2403.19347
arXiv logo
Cornell University Logo

Computer Science > Information Retrieval

arXiv:2403.19347 (cs)
[Submitted on 28 Mar 2024]

Title:Breaking the Length Barrier: LLM-Enhanced CTR Prediction in Long Textual User Behaviors

View PDFHTML (experimental)
Abstract:With the rise of large language models (LLMs), recent works have leveraged LLMs to improve the performance of click-through rate (CTR) prediction. However, we argue that a critical obstacle remains in deploying LLMs for practical use: the efficiency of LLMs when processing long textual user behaviors. As user sequences grow longer, the current efficiency of LLMs is inadequate for training on billions of users and items. To break through the efficiency barrier of LLMs, we propose Behavior Aggregated Hierarchical Encoding (BAHE) to enhance the efficiency of LLM-based CTR modeling. Specifically, BAHE proposes a novel hierarchical architecture that decouples the encoding of user behaviors from inter-behavior interactions. Firstly, to prevent computational redundancy from repeated encoding of identical user behaviors, BAHE employs the LLM's pre-trained shallow layers to extract embeddings of the most granular, atomic user behaviors from extensive user sequences and stores them in the offline database. Subsequently, the deeper, trainable layers of the LLM facilitate intricate inter-behavior interactions, thereby generating comprehensive user embeddings. This separation allows the learning of high-level user representations to be independent of low-level behavior encoding, significantly reducing computational complexity. Finally, these refined user embeddings, in conjunction with correspondingly processed item embeddings, are incorporated into the CTR model to compute the CTR scores. Extensive experimental results show that BAHE reduces training time and memory by five times for CTR models using LLMs, especially with longer user sequences. BAHE has been deployed in a real-world system, allowing for daily updates of 50 million CTR data on 8 A100 GPUs, making LLMs practical for industrial CTR prediction.
Comments:Accepted by the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR), 2024
Subjects:Information Retrieval (cs.IR); Artificial Intelligence (cs.AI)
Cite as:arXiv:2403.19347 [cs.IR]
 (orarXiv:2403.19347v1 [cs.IR] for this version)
 https://doi.org/10.48550/arXiv.2403.19347
arXiv-issued DOI via DataCite

Submission history

From: Binzong Geng [view email]
[v1] Thu, 28 Mar 2024 12:05:15 UTC (3,496 KB)
Full-text links:

Access Paper:

Current browse context:
cs.IR
Change to browse by:
export BibTeX citation

Bookmark

BibSonomy logoReddit logo

Bibliographic and Citation Tools

Bibliographic Explorer(What is the Explorer?)
Connected Papers(What is Connected Papers?)
scite Smart Citations(What are Smart Citations?)

Code, Data and Media Associated with this Article

CatalyzeX Code Finder for Papers(What is CatalyzeX?)
Hugging Face(What is Huggingface?)
Papers with Code(What is Papers with Code?)

Demos

Hugging Face Spaces(What is Spaces?)

Recommenders and Search Tools

Influence Flower(What are Influence Flowers?)
CORE Recommender(What is CORE?)

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community?Learn more about arXivLabs.

Which authors of this paper are endorsers? |Disable MathJax (What is MathJax?)

[8]ページ先頭

©2009-2025 Movatter.jp