Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Cornell University

Monday, May 5: arXiv will be READ ONLY at 9:00AM EST for approximately 30 minutes. We apologize for any inconvenience.

We gratefully acknowledge support from the Simons Foundation,member institutions, and all contributors.Donate
arxiv logo>cs> arXiv:2402.17061
arXiv logo
Cornell University Logo

Computer Science > Machine Learning

arXiv:2402.17061 (cs)
[Submitted on 26 Feb 2024]

Title:A Multi-Fidelity Methodology for Reduced Order Models with High-Dimensional Inputs

Authors:Bilal Mufti,Christian Perron,Dimitri N. Mavris (ASDL, Daniel Guggenheim School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, Georgia)
View PDFHTML (experimental)
Abstract:In the early stages of aerospace design, reduced order models (ROMs) are crucial for minimizing computational costs associated with using physics-rich field information in many-query scenarios requiring multiple evaluations. The intricacy of aerospace design demands the use of high-dimensional design spaces to capture detailed features and design variability accurately. However, these spaces introduce significant challenges, including the curse of dimensionality, which stems from both high-dimensional inputs and outputs necessitating substantial training data and computational effort. To address these complexities, this study introduces a novel multi-fidelity, parametric, and non-intrusive ROM framework designed for high-dimensional contexts. It integrates machine learning techniques for manifold alignment and dimension reduction employing Proper Orthogonal Decomposition (POD) and Model-based Active Subspace with multi-fidelity regression for ROM construction. Our approach is validated through two test cases: the 2D RAE~2822 airfoil and the 3D NASA CRM wing, assessing combinations of various fidelity levels, training data ratios, and sample sizes. Compared to the single-fidelity PCAS method, our multi-fidelity solution offers improved cost-accuracy benefits and achieves better predictive accuracy with reduced computational demands. Moreover, our methodology outperforms the manifold-aligned ROM (MA-ROM) method by 50% in handling scenarios with large input dimensions, underscoring its efficacy in addressing the complex challenges of aerospace design.
Subjects:Machine Learning (cs.LG)
Cite as:arXiv:2402.17061 [cs.LG]
 (orarXiv:2402.17061v1 [cs.LG] for this version)
 https://doi.org/10.48550/arXiv.2402.17061
arXiv-issued DOI via DataCite

Submission history

From: Bilal Mufti [view email]
[v1] Mon, 26 Feb 2024 22:47:03 UTC (15,378 KB)
Full-text links:

Access Paper:

Current browse context:
cs.LG
Change to browse by:
export BibTeX citation

Bookmark

BibSonomy logoReddit logo

Bibliographic and Citation Tools

Bibliographic Explorer(What is the Explorer?)
Connected Papers(What is Connected Papers?)
scite Smart Citations(What are Smart Citations?)

Code, Data and Media Associated with this Article

CatalyzeX Code Finder for Papers(What is CatalyzeX?)
Hugging Face(What is Huggingface?)
Papers with Code(What is Papers with Code?)

Demos

Hugging Face Spaces(What is Spaces?)

Recommenders and Search Tools

Influence Flower(What are Influence Flowers?)
CORE Recommender(What is CORE?)
IArxiv Recommender(What is IArxiv?)

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community?Learn more about arXivLabs.

Which authors of this paper are endorsers? |Disable MathJax (What is MathJax?)

[8]ページ先頭

©2009-2025 Movatter.jp